
Model checking transactional memory

John O’Leary
Intel

Bratin Saha
Intel

Mark R. Tuttle
Intel

Transactional memory is a programming abstrac-
tion for multi-threaded programming that provides
thread synchronization without requiring the explicit
use of locks. Locks are notoriously difficult to use
correctly: They can lead to deadlock, priority inver-
sion, and subtle errors, and they can impede compo-
sitionality. To the programmer, transactional mem-
ory has a very simple interface: Every block of code
labeled “atomic” is executed as an “atomic transac-
tion” without any interferences from other threads.
To the implementer, transactional memory is an en-
tre into the fascinating and subtle world of shared
memory protocols.

Shared memory protocols are the way of the fu-
ture. The programming model for the many-core
chips coming from Intel and AMD is likely to be a
shared memory model, but shared memory protocols
are notoriously hard to get right, and their verifica-
tion is not well supported by widely-available model
checking implementations. For software protocol ver-
ification, explicit state model checkers like SPIN and
Murphi appear to be the state of the art. Most
explicit state model checkers, however, were writ-
ten with a message-passing model of concurrency in
mind, and not shared memory, which leads to two
problems. First, shared memory protocols seem to
bring explicit state model checker quickly to their
knees, because, we suspect, the transition graph for
shared memory protocols has a higher branching fac-
tor than message passing protocols. Second, models
for most explicit state model checkers are written in
a guarded-command style, which is a natural style for
message passing but not for shared memory.

Our goal is to learn to model check shared memory
algorithms in general, and transactional memory in
particular. We take the Intel McRT STM [1] imple-
mentation of transactional memory as our example,
which is itself an interesting, innovative, and subtle
shared memory protocol. We choose SPIN [4] as our
model checker because it is engineered for high per-
formance, it is famous for its partial order reduction
algorithm which has the effect of reducing the branch-
ing factor of the transition graph, and its input lan-
guage, Promela, is a natural language for describing
the sequential natural of each thread in a concur-
rent program. SPIN assumes processes communicate
through message channels, but it does have global
variables, and what is shared memory but a collec-
tion of globabl variables? The use of global variables,

however, decimates the performance of the partial or-
der reduction algorithm, which was the whole reason
for choosing SPIN in the first place. It took signifi-
cant engineering to model transactional memory effi-
ciently in SPIN, but now, for example, we can model
check the relatively large configuration of 2 threads
each running a transaction consisting of 3 loads and
stores — proving that every execution of every one
of the 14,400 such programs is serializable — and we
can do so in just over an hour and a half.

We are not the first paper to consider model check-
ing transactional memory [2, 3]. What distinguishes
our work, however, is our intention to allow both
transactional and non-transactional loads and stores,
meaning that load and stores are not required to ap-
pear within an “atomic” block. This means that we
need to view the transactional model as an exten-
sion to the existing processor memory ordering model,
which itself is already challenging to specify. Adding
transactions adds new complexities: how do we un-
derstand the behavior when two threads access the
same memory location, one in a transaction and one
outside? This extension is work in progress, and we
conclude our talk with a discussion of the issues aris-
ing from this extension.

References

[1] A. Adl-Tabatabai and et al. Compiler and run-
time support for efficient software transactional
memory. In Proceedings of the 2006 ACM SIG-
PLAN conference on Programming language de-
sign and implementation, pages 26–37, June 2006.

[2] R. Alur, K. McMillan, and D. Peled. Model-
checking of correctness conditions for concurrent
objects. In Eleventh Annual IEEE Symposium
on Logic on Computer Science (LICS’96), pages
219—228, July 1996.

[3] A. Cohen, J. O’Leary, A. Pnueli, M. Tuttle, and
L. Zuck. Verifying correctness of transactional
memories. In M. Sheeran and J. Baumgartner,
editors, Seventh International Symposium on For-
mal Methods in Computer Aided Design (FM-
CAD’07), Nov. 2007.

[4] G. Holzman. The Spin Model Checker: Primer
and Reference Manual. Addison-Wesley, 2004.


