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Abstract� This work applies the theory of knowledge in distributed systems to the
design of e�cient fault�tolerant protocols� We de�ne a large class of problems requiring
coordinated� simultaneous action in synchronous systems� and give a method of trans�
forming speci�cations of such problems into protocols that are optimal in all runs� for
every possible input to the system and faulty processor behavior� these protocols are
guaranteed to perform the simultaneous actions as soon as any other protocol could pos�
sibly perform them� This transformation is performed in two steps� In the �rst step�
we extract directly from the problem speci�cation a high�level protocol programmed us�
ing explicit tests for common knowledge� In the second step� we carefully analyze when
facts become common knowledge� thereby providing a method of e�ciently implementing
these protocols in many variants of the omissions failure model� In the generalized omis�
sions model� however� our analysis shows that testing for common knowledge is NP�hard�
Given the close correspondence between common knowledge and simultaneous actions�
we are able to show that no optimal protocol for any such problem can be computation�
ally e�cient in this model� The analysis in this paper exposes many subtle di�erences
between the failure models� including the precise point at which this gap in complexity
occurs�
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� Introduction

The problem of ensuring proper coordination between processors in distributed systems
whose components are unreliable is both important and di�cult� There are generally
two aspects to such coordination� the actions the di�erent processors perform� and the
relative timing of these actions� Both aspects are crucial� for instance� in maintaining
consistent views of a distributed database� In particular� it is often most desirable to
perform coordinated actions simultaneously at di�erent sites of a system� It is therefore
of great interest to study the design of protocols involving simultaneous actions� actions
performed simultaneously by all processors whenever they are performed at all�

Dwork and Moses study in �DM� the design of protocols for simultaneous Byzantine
agreement in the crash failure model� Their analysis focuses on determining necessary
and su�cient conditions for reaching simultaneous Byzantine agreement in terms of the
processors� states of knowledge about the system� As a result of this analysis� they
derive a protocol for simultaneous Byzantine agreement with the unique property of
being optimal in all runs� that is� their protocol halts as early as any protocol for the
problem could� given the pattern of faulty processor behavior that occurs� In contrast�
previous protocols do not adapt their behavior on the basis of faulty processor behavior�
and hence always perform as poorly as they do in their worst case run� Implicit in
the work of Dwork and Moses is a general method for obtaining optimal protocols for
many problems involving simultaneous actions in the crash failure model� Their technical
analysis� however� makes strong use of particular properties of the crash failure model�
and does not extend to more complicated failure models�

This paper presents a novel approach to the design of fault�tolerant protocols in
several variants of the more complex omissions failure model� We explicitly de�ne a
large class of simultaneous choice problems� a class intended to capture the essence of
simultaneous coordination in synchronous systems� Many well�known problems� includ�
ing simultaneous Byzantine agreement� distributed �ring squad� etc�� can be formulated
as simultaneous choice problems� As the result of a delicate knowledge�based analysis
in these failure models� we derive at once protocols that are optimal in all runs for all
simultaneous choice problems� Each protocol is guaranteed to perform the desired simul�
taneous actions as soon as any protocol for the problem could� given the input to the
system and the pattern of faulty processor behavior� �We will use optimal as shorthand
for optimal in all runs�� Thus� we show how a knowledge�based analysis can be used as
a general tool for the design of protocols for an entire class of problems� Our analysis
applies to the crash failure model as well� and formally extends �DM� to the whole class
of simultaneous choice problems�

Our approach is based on the close relationship between knowledge� communication�
and action in distributed systems� A number of recent works ��HM�� �DM�� �Mo�� show
that simultaneous actions are closely related to common knowledge� Informally� a fact is
common knowledge if it is true� everyone knows it� everyone knows that everyone knows

	



it� and so on ad in�nitum� Notice that every processor performing a simultaneous action
knows the action is being performed� In addition� since such actions are performed
simultaneously by all processors� every processor knows that all processors know the
action is being performed� This argument can be formalized and extended to show that
when a simultaneous action is performed� it is common knowledge that the action is being
performed� Consequently� a necessary condition for performing simultaneous actions is
attaining common knowledge of particular facts� Interestingly� our work shows that in a
precise sense this is also a su�cient condition� The problem of performing simultaneous
actions reduces to the problem of attaining common knowledge of particular facts�

In deriving optimal protocols for simultaneous choice problems� we make explicit and
direct use of the relationship between common knowledge and simultaneous actions� The
derivation proceeds in two stages� In the �rst stage� we program the optimal protocols
in a high�level language where processors� actions depend on explicit tests for common
knowledge of certain facts� These high�level protocols are extracted directly from the
problem speci�cations via a few simple manipulations� The second stage deals with
e�ectively implementing these tests for common knowledge� We give a direct imple�
mentation of such tests in all variants of the omissions failure model we consider� As a
result� our high�level protocols have e�ective implementations in these failure models as
low�level� standard protocols that are optimal in all runs�

Consider� for example� the following version of the distributed �ring squad problem
�cf� �BL�� �CDDS�� �R��� An external source may send �start� signals to some of the
processors in the system at unpredictable� possibly di�erent� times� It is required that
�i� if any nonfaulty processor receives a �start� signal� then all nonfaulty processors
perform an irreversible ��ring� action at some later point� �ii� whenever any nonfaulty
processor ��res�� all nonfaulty processors do so simultaneously� and �iii� if no processor
receives a �start� signal� then no nonfaulty processor ��res�� The high�level protocol we
derive for this problem in the omissions model requires all processors to act as follows�

repeat every round

send current view to every processor

until it is common knowledge that

some processor received a �start� signal�

��re� and halt�

Since we exhibit an e�ective implementation of the test for common knowledge embedded
in this protocol� this high�level protocol can be transformed into a standard protocol that
is optimal in all runs� No previous protocol for this problem suggested in the literature
is optimal in all runs� Furthermore� in many cases this protocol ��res� much earlier than
any other known protocol for this problem� In some cases� this protocol ��res� as soon
as one round after the �rst �start� signal is received�

We show that optimal protocols for simultaneous choice problems can always be im�
plemented in a communication e�cient way� in all variants of the omissions model we
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consider� However� our direct implementation of tests for common knowledge is not com�
putationally e�cient� It requires processors to perform exponential time computations
between consecutive rounds of communication� One of the major technical contributions
of this paper is a method of e�ciently implementing tests for common knowledge in sev�
eral variants of the omissions failure model� In the standard omissions model� we provide
a clean and concise method of e�ciently implementing tests for common knowledge� The
analysis underlying this method reveals the basic combinatorial structure underlying the
omissions model� as well as crisply characterizing the set of facts that can be common
knowledge at any point in the execution of a protocol� In the receiving omissions model�
in which faulty processors may fail to receive messages rather than to send messages� test�
ing for common knowledge is shown to be trivial� This exposes a signi�cant di�erence
between two seemingly symmetric failure models�

We are not able to e�ciently implement tests for common knowledge in the generalized
omissionsmodel� in which faulty processors may fail both to send and to receive messages�
In fact� we show that testing for common knowledge in this model in NP�hard� As a
result� using the close relationship between common knowledge and simultaneous actions�
we are able to show that no optimal protocol for any reasonable simultaneous choice
problem can be computationally e�cient unless P�NP� In particular� in this model there
can be no computationally�e�cient optimal protocol for the distributed �ring squad
problem stated above� for simultaneously performing Byzantine agreement �see �PSL��
�DM��� and for most any other simultaneous problem� We consider another variant of the
omissions model� called generalized omissions with information� in which it is assumed
that the intended receiver of an undelivered message can test �and therefore knows�
whether it or the sender is at fault� We show that the techniques used in the standard
omissions model extend to this model as well� yielding computationally�e�cient optimal
protocols� As a result� we see that optimal protocols for simultaneous choice problems
are computationally intractable in the generalized omissions model precisely because of
the fact that in this model undelivered messages do not uniquely determine the set of
faulty processors�

Thus� we show how to derive e�cient optimal protocols in the omissions model� and
we show that optimal protocols are intractable in the generalized omissions model� Since
it is unrealistic to expect conventional processors �limited to polynomial�time computa�
tion� to follow such intractable protocols� it becomes becomes interesting to ask how well
resource�bounded processors can perform simultaneous actions in the generalized omis�
sions model� Analyzing this problem will require extending the theory of knowledge in
distributed systems to account for the restricted computational power of such processors�
Such an extension should give rise to notions of resource�bounded knowledge and com�
mon knowledge that closely correspond to the ability of resource�bounded processors to
perform simultaneous actions� The need for a theory of resource�bounded knowledge has
already been demonstrated� primarily by problems in which computational complexity
is introduced by restricting the computational power of the adversary� thus allowing so�
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lutions involving encryption� This work� however� provides a more compelling indication
of the need for such a theory� even for the analysis of simple problems in distributed
computation that do not make such assumptions about the adversary�

Since some of the proofs in this paper are quite technical� their details may make it
di�cult to obtain a high�level understanding of this work� We strongly recommend that
the reader skip all proofs on the �rst reading� The paper is organized as follows� Section �
de�nes the model of distributed systems used in the paper� and Section � contains precise
de�nitions of notions of knowledge in such a system� In Section � we de�ne the notion of a
simultaneous choice problem� a large class of problems involving coordinated simultaneous
actions� Section � presents a uniform method of deriving an optimal high�level protocol
from the speci�cation of a simultaneous choice problem� using explicit tests for common
knowledge� Section � deals with the problem of e�ciently implementing tests for common
knowledge of facts relevant to simultaneous choice problems� The analysis in Section �
reveals interesting properties of the di�erent failure models� and exposes �ne distinctions
between them� Finally� Section � contains some concluding remarks�

� Model of a System

This section introduces a model of the distributed systems with which this paper is
concerned� Our treatment extends and is closely related to that of �DM��

We consider synchronous systems of unreliable processors� Such a system consists of a
�nite collection P � fp�� � � � � png of n processors �n � ��� each pair of which is connected
by a two�way communication link� Processors share a discrete global clock� that starts
at time 
 and advances in increments of one� Communication in the system proceeds in
a sequence of rounds� with round k taking place between time k�	 and time k� Between
rounds of communication a processor may perform local computation and other internal
actions� A processor starts in some initial state at time 
� Then� in every following round�
the processor �rst sends a set of messages to other processors� and then receives messages
sent to it by other processors during the same round� In addition� a processor may also
receive requests for service from clients external to the system �think� for example� of
a distributed airline reservation system�� Actions resulting from the servicing of such
requests may take a variety of forms� including the initiation of various activities within
the system by sending certain messages to other processors in later rounds� Each message
is assumed to be tagged with the identities of the sender and intended receiver of the
message� as well as the round in which it is sent� similarly for each request� At any given
time� a processor�s message history consists of the list of messages it has received from the
other processors� and a processor�s input history consists of its initial state together with

�We assume the existence of a shared global clock for ease of exposition
 The analysis performed in
this paper applies even in synchronous systems in which processors have local clocks and start operating
in an arbitrarily staggered order
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the requests it has received from the system�s external clients� A processor�s view at any
given time consists of its message history� its input history� the time on the global clock�
and the processor�s identity� For technical reasons� it will be convenient to talk about
processors� views at negative times �before time 
�� A processor�s view at a negative time
is de�ned to be a distinguished empty view�

We think of the processors as following a protocol � which speci�es exactly what mes�
sages each processor is required to send during a round �and what other actions the
processor is required to perform� as a deterministic function of the processor�s view�
While a protocol determines the behavior of each processor �as a function of its view��
processors are unreliable and some of them may be faulty� the rest being nonfaulty� Both
faulty and nonfaulty processors faithfully follow the protocol� their behaviors di�ering
only in the messages they successfully send and receive�� A nonfaulty processor sends
every message it is required by the protocol to send� and receives every message sent to
it by other processors� in all rounds of communication� A faulty processor� however� may
fail to send or receive certain messages� We will consider a number of di�erent processor
failure models� �i� the omissions model ��MSF��� in which a faulty processor receives
every message sent to it� but sends only an arbitrary �not necessarily strict� subset of the
messages it is required to send� �ii� the receiving omissions model� in which a faulty pro�
cessor sends every message it is required to send� but receives only an arbitrary subset of
the messages sent to it� �iii� the generalized omissions model� in which a faulty processor
may both send only an arbitrary subset of the messages it is required to send and receive
only an arbitrary subset of the messages sent to it� and �iv� generalized omissions with

information� which di�ers from the generalized omissions model in that a processor not
receiving a message from another processor can determine whether it or the sender is at
fault�

An in�nite execution of a protocol in a system is called a run of the protocol� We
identify a run with the complete history of events that take place during the run� from
time 
 until the end of time� This includes each processor�s complete input history�
complete message history� and� if the processor is faulty in the run� a description of
its behavior during each round �formalized in the following paragraph�� A pair ��� ���
where � is a run and � is a natural number� is called a point� and represents the state of
the system after the �rst � rounds of �� We denote processor q�s view at the point ��� ��
by v�q� �� ���

We now de�ne the notion of a failure pattern� a formal description of faulty processor
behavior during a run� The notion of a failure pattern in each variant of the omissions
model is a suitable restriction of the general de�nition given here� Remember that a
faulty processor may fail to send or receive certain messages� It is therefore natural to
de�ne the faulty behavior of a processor p to be a pair of functions S and R mapping

�Intuitively� processors attempt to send and receive all required messages
 Failures are caused by
faulty input�output ports
 However� we will often speak of processors failing to send or receive a given
message when we mean that the message was not successfully sent or received� respectively
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round numbers to sets of processors� Intuitively� these are the processors to which p
fails to send and receive messages� respectively� during each round� A failure pattern is
a collection of faulty behaviors hSi� Rii� one for each processor pi� The processor pi is
said to be faulty in such a failure pattern if either of the sets Si�k� or Ri�k� is nonempty
for some k� in which case pi is said to fail during round k� The failure pattern of a run
is a failure pattern with the property that in every round k each processor pi sends no
messages to processors in Si�k� but sends all required messages to processors not in Si�k��
and receives no messages from processors in Ri�k� but receives all messages sent to it by
processors not in Ri�k�� Given a run �� if �i is the complete input history of processor pi
in �� then we say that � � ���� � � � � �n� is the input to �� A pair ��� ��� where � is a
failure pattern and � is an input� is called an operating environment � Notice that a run
is uniquely determined by a protocol and an operating environment� Two runs of two
di�erent protocols are said to be corresponding runs if they have the same operating
environment� The fact that an operating environment is independent of the protocol
will allow us to compare di�erent protocols according to their behavior in corresponding
runs�

In this work� we study the behavior of protocols in the presence of a bounded number
of failures �of a particular type� and a given setting of possible inputs� It is therefore
natural to identify a system with the set of all possible runs of a given protocol under
such circumstances� Formally� a system is identi�ed with the set of runs of a protocol P
by n � � processors� at most t � n�� of which may be faulty �in the sense of a particular
failure modelM�� where the complete input history of each processor pi is an element of a
set �i� We denote this set of runs by the tuple � � �n� t�P�M���� � � � ��n�� Our de�nition
of a system ensures that the input to the system is orthogonal to� and hence carries no
information about� the failure pattern� In addition� since the set of possible inputs in
the system has the form �� � � � � � �n� one processor�s input contains no information
about any other processor�s input� and hence the only way in which processors obtain
information about other processors� input is via messages communicated between the
processors in the system�

While a protocol may be thought of as a function of processors� views� protocols
for distributed systems �as well as protocols for sequential and parallel computation�
are typically written for systems of arbitrarily large size� In this sense� the actions
and messages required of a processor by a protocol actually depend on the number of
processors in the system �and perhaps the bound on the number of failures� as well as
the view of the processor� Therefore� we formally de�ne a protocol to be a function
from n� t� and a processor�s view to a list of actions the processor is required to perform�
followed by a list of messages the processor is required to send in the following round��

Since each protocol is de�ned for systems of arbitrary size� it is natural to de�ne a

�Notice that processors must compute this function by following some algorithm
 Thus� while we
formally de�ne a protocol to be a function� it is convenient to maintain both views of a protocol as a
function and an algorithm
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class of systems to be a collection of systems f��n� t� � n � t� � � 
g� where ��n� t� �
�n� t�P�M���� � � � ��n� for some �xed protocol P� failure model M� and input sets �i�

� De�nition of Knowledge

Our analysis makes essential use of reasoning about processors� knowledge at various
points in the execution of a protocol� This section contains precise de�nitions of the
notions of knowledge we use� For the purpose of these de�nitions� we assume that a
particular system� a set of runs as de�ned in the previous section� is �xed ahead of time�
All runs mentioned will be runs of this system� and all points will be points in such runs�
Our treatment is a modi�cation of that of �DM� and �HM��

We assume the existence of an underlying logical language for representing all rele�
vant ground facts � facts about the system that do not explicitly mention processors�
knowledge �for example� �the value of register x is ��� or �processor pi failed in round ����
Formally� a ground fact � will be identi�ed with a set of points 	 ���� Intuitively� this is
the set of points at which the fact holds� A ground fact � is said to hold at a point ��� ���
denoted ��� �� j� �� i� ��� �� � 	 ���� We will de�ne various ground facts as we go along�
The set of points corresponding to these facts will be clear from context� A fact is said
to be valid if it is true of all points in all systems� A fact is said to be valid in the system

for a given system if it is true of all points in the system�

We now de�ne what facts a processor is said to �know� at any given point ��� �� in
the system� Roughly speaking� a processor pi is said to know a fact � if � is guaranteed
to hold� given pi�s view of the run� More formally� we say pi knows � at ��� k�� denoted
��� k� j� Ki�� if ���� k� j� � for all points ���� k� satisfying v�pi� �� k� � v�pi� ��� k�� This
de�nition of knowledge is essentially the total view interpretation of �HM�� It is �exter�
nal�� in the sense that a processor is ascribed knowledge based solely on the processor�s
information� and not� say� on the local computation it performs or on its computational
power� Notice that a processor�s knowledge at a given point depends on the system as
well as on the speci�c run� Thus� implicit in the de�nition of ��� �� j� � is the system
relative to which knowledge is determined� Throughout the paper it will be clear from
context what the relevant system should be whenever �j�� is used�

We will �nd it useful to extend this de�nition of knowledge to sets of processors as
well� The view of a set of processors G � P at ��� k�� denoted v�G� �� k�� is de�ned by�

v�G� �� k�
def
� fv�p� �� k� � p � Gg�

Thus� roughly speaking� G�s view is simply the joint view of its members� We say
that the group G implicitly knows � at ��� k�� denoted ��� k� j� IG�� if for all points
���� k� satisfying v�G� �� k� � v�G� ��� k� it is the case that ���� k� j� �� In the particular
case that G is the singleton set fpig� the notions of IG and Ki coincide� Intuitively� G
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implicitly knows � if the joint view of G�s members guarantees that � holds� Notice
that if processor p knows � and processor q knows � 	 
� then together they implicitly
know 
� even if neither of them knows 
 individually� The notion of implicit knowledge
was �rst de�ned in �HM��

The notions of knowledge and implicit knowledge de�ned above are closely related
to modal logics that have been extensively studied by philosophers �see �Hi��� We say
that an operator M has the properties of the modal system S� if it satis�es a� if � is
valid in the system then M� is valid in the system� and the following formulas are valid�
b� M� 	 �� c� �M� 
M�� 	 
�� 	 M
� d� M� 	 MM�� and e� �M� 	 M�M��
The de�nitions of knowledge and implicit knowledge given above immediately imply the
following �cf� �HM��� �DM���

Proposition �� The operators Ki and IG have the properties of S��

Finally� the state of common knowledge among a group of processors will be central to
our analysis� Its central role will result from the close correspondence between common
knowledge among the members of a group and simultaneous actions performed by the
group� Roughly speaking� as we mentioned in the introduction� a fact � is common
knowledge to a given group if � holds� everyone in the group knows �� everyone knows
that everyone knows �� and so on ad in�nitum� Formally de�ning common knowledge�
however� must be done with great care� The problem is that the groups of interest
are not always explicitly given as �xed subsets of P � For example� we will be most
interested in facts that are common knowledge to the group N of nonfaulty processors�
In any given context �in this case� any given run�� this group is a �xed set of processors�
But the precise identity of N varies from one context to another� This motivates us to
de�ne common knowledge to a slightly more general notion of groups of processors� An
indexical set S of processors is a function mapping points to sets of processors� That
is� S � ��� �� �
 S��� ��� where S��� �� � P � The notion of an indexical set is a direct
generalization of the notion of a �xed set of processors� In particular� we can identify a
�xed set of processors with a constant indexical set� The group N of nonfaulty processors�
the group P of all processors� the group of all processors that haven�t displayed faulty
behavior by the current time� and many other groups of interest are all indexical sets of
processors�

The �rst step in de�ning what it means for a fact to be common knowledge among
the members of a given group of processors is to determine what it means for everyone in
the group to know a fact� For a �xed set G� �everyone in G knows ��� denoted EG�� is
customarily de�ned by EG� �

V
pi�G

Ki� �see �HM��� In extending this notion to indexical

sets� however� a subtle decision must be made� The immediate generalization of this
de�nition is to de�ne ES� �

V
pi�S

Ki�� This generalization� however� does not yield a

notion of common knowledge that closely corresponds to S�s ability to perform simulta�
neous actions �see Lemma � below�� Given that G is a �xed set� and that the knowledge
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operator Ki satis�es property �a� of S� given above� it follows that pi � G � Ki�pi � G�
is valid� Therefore� an equivalent de�nition of EG� is EG� �

V
pi�G

Ki�pi � G 	 ��� We

choose this form of �everyone knows� as the appropriate generalization to indexical sets�
Formally� given an indexical set S� we de�ne ES�� essentially corresponding to everyone

in S knows �� by

ES�
def
�
�

pi�S

Ki� pi � S 	 ���

Thus� ES� holds exactly if every member of S knows that� if it is a member of S� then
� holds�

We now de�ne � is common knowledge to S� denoted CS�� by

CS�
def
� � 
 ES� 
 ESES� 
 � � � 
 Em

S
� 
 � � � �

In other words� ��� �� j� CS� i� both ��� �� j� � and for all m � 	 it is the case that
��� �� j� Em

S
�� Thus� roughly speaking� a fact is common knowledge if it is true� everyone

knows it� everyone knows that everyone knows it� etc� The de�nitions of ES and CS

directly generalize the standard notions from �HM� and �DM��

A useful tool for thinking about Em
S
� and CS� is an undirected graph whose nodes

are the points of the system� in which two points ��� k� and ���� k� are connected by an
edge i� some processor p that is a member of both S��� k� and S���� k� has the same
view at both ��� k� and ���� k�� This graph is called the similarity graph relative to S�
For example� if S is the set N of nonfaulty processors� two points are connected by an
edge in the similarity graph i� there is a processor that is nonfaulty at both points� and
has the same view at both points� An easy argument by induction on m shows that
��� k� j� Em

S
� i� ���� k� j� � for all points ���� k� of distance at most m from ��� k� in this

graph� It follows that ��� k� j� CN� i� ���� k� j� � for all points ���� k� in the connected
component of ��� k�� Two points ��� �� and ���� �� are said to be similar relative to S�
denoted ��� ��

S

� ���� ��� if they are in the same connected component of the similarity
graph relative to S� Since the indexical set S is generally clear from context �most
often being the set N of nonfaulty processors�� we denote similarity by � without the
superscript S� We thus have�

Theorem �� ��� k� j� CS� i� ���� k� j� � for all points ���� k� satisfying ��� k� � ���� k��

Our analysis will exploit this relationship between common knowledge and the similarity
graph� The similarity graph will provide us with a useful combinatorial tool with which
to study when facts become common knowledge�

One of the useful properties of common knowledge is the so�called ��xpoint axiom�
�see �HM��

CS� � ESCS��






which states that common knowledge is a �xpoint of the ES operator �provided S is
nonempty� as will invariably be the case in this work�� It implies that a fact�s being
common knowledge is in a sense �public�� a fact can be common knowledge to a group
of processors only if all members of the group know that it is common knowledge� This
axiom also implies that when a fact becomes common knowledge� it becomes common
knowledge to all relevant processors simultaneously� Another useful fact about common
knowledge is captured by the following induction rule�

If � 	 ES� is valid in the system�
then � 	 CS� is valid in the system�

Roughly speaking� the induction rule implies that if a fact is �public� to a group of
processors� in the sense that whenever it holds it is known to all members of the group�
then whenever it holds it is in fact common knowledge� These are two essential properties
of common knowledge that will prove useful to our analysis� In addition� we can also
show the following�

Proposition �� The operator CS has the properties of S��

According to our de�nitions� facts about the system are properties of points� they
are either true or false at any given point� It is often useful to be able to refer to facts
as being about things other than points �e�g�� properties of runs�� In general� a fact � is
said to be a fact about X if �xing X determines the truth �or falsity� of �� For example�
a fact � is said to be a fact about the input if �xing the input determines whether or
not � holds� That is� for any given input �� either � holds at all points ��� k� where � is
a run with input �� or � holds at no such point� The meaning of a fact being about the

operating environment� about the existence of failures� about the �rst k rounds� etc�� are
similarly de�ned�

� Simultaneous Choice Problems

In order to study in a uniform and general way the design of protocols for problems
involving coordinated simultaneous action� a de�nition of this class of problems is re�
quired� Lacking a most general de�nition� we focus on the class of simultaneous choice

problems� a large class of problems that capture the essence of such coordinated action in
a distributed environment� Roughly speaking� these problems require that one of a num�
ber of alternative actions be performed �or �chosen�� simultaneously by the nonfaulty
processors� where for each action we are given conditions under which the action must

be performed and conditions under which its performance is forbidden� In addition to
these conditions� the speci�cation of such a problem must also determine the possible

	




operating environments in which such a choice is to be made� by specifying what inputs
each processor may possibly receive and what types of processor failures are possible�

Formally� a simultaneous action a is an action having two associated conditions pro�a�
and con�a�� both facts about the operating environment� A simultaneous choice prob�

lem C is a problem determined by a set fa�� � � � � amg of simultaneous actions and their
associated conditions� together with a failure model M� and a set �j of complete input
histories for each processor pj � Intuitively� we will require that every run � of a protocol
implementing C satisfy the following conditions�

�i� each nonfaulty processor performs at most one of the ai�s�

�ii� any ai performed by some nonfaulty� processor is performed simultaneously by all
of them�

�iii� ai is performed by all nonfaulty processors if � satis�es pro�ai�� and

�iv� ai is not performed by any nonfaulty processor if � satis�es con�ai��

More formally� a protocol P and the simultaneous choice C determine a class of systems
f��n� t� � n � t� �g� where ��n� t� � �n� t�P�M���� � � � ��n�� We say that P imple�

ments C if every run of every system in the class determined by P and C satis�es the
conditions �i���iv� above� A simultaneous choice problem is said to be implementable �or
satis�able� if there is a protocol that implements it�

In addition to simultaneous choice problems� we also consider the closely related class
of strict simultaneous choice problems� Both classes are speci�ed in essentially the same
way� except that runs of a protocol implementing a strict simultaneous choice are required
to satisfy the modi�ed condition

�i�� each nonfaulty processor performs exactly one of the ai�s�

together with conditions �ii���iv� above� All of the results in this paper hold for strict
simultaneous choice problems as well as simultaneous choice problems� and henceforth
we will typically mention only simultaneous choice problems explicitly�

Having formally de�ned simultaneous choice problems �and strict simultaneous choice
problems�� let us consider when the speci�cation of such a problem disallows performing
a simultaneous action ai� Clearly� if con�ai� holds then performing ai is disallowed� In
addition� since by condition �i� no more than one action may be performed by the non�
faulty processors in any given run� the condition pro�aj�� for some j �� i� requires aj to be

�We have chosen the set N of nonfaulty processors as the set of processors required to perform actions
simultaneously� but the notion of a simultaneous choice problem may be stated in terms of many other
similar �indexical� sets of processors� including the set P of all processors� with the analysis in this
section and the next one carrying through without change


		



performed� and hence also disallows ai� It is easy to see that these are the only conditions
under which performing ai is disallowed� This motivates the following de�nition�

enabled�ai�
def
� �con�ai� 


�

j ��i

�pro�aj��

Our discussion above implies that the performance of an action ai is allowed by the
problem speci�cation i� the condition enabled�ai� is satis�ed� Notice that it is possible
for several of the conditions enabled�ai� to hold at once� in which case performance of
any of the enabled actions is allowed by the problem speci�cation� In addition� it is easy
to see that the formulas con�ai� 	 �enabled�ai� and pro�ai� 	 �enabled�aj� �j �� i� are
valid in any system in which processors follow a protocol implementing a simultaneous
choice� Finally� notice that because the conditions pro�aj� and con�aj� are facts about
the operating environment� so is each condition enabled�ai��

The de�nition of a simultaneous choice problem is fairly abstract� However� many
familiar problems requiring simultaneous action by a group of processors are instances
of a simultaneous choice or strict simultaneous choice� In all known cases� the conditions
pro�ai� and con�ai� are facts about the input and the existence of failures� �By the

existence of failures we mean whether any failure whatsoever occurs during the run� Some
problems allow the nonfaulty processors to display default behavior in the presence of
failures� see �LF��� For example� the distributed �ring squad problem is a simultaneous
choice consisting of a single ��ring� action a� with the condition pro�a� being the receipt of
a �start� signal by a nonfaulty processor� and the condition con�a� being that no processor
receives a �start� signal� The condition enabled�a� is simply that some processor receives
a �start� signal� Each set �j of possible inputs simply allows for a �start� message to be
delivered to any processor at any time� The simultaneous Byzantine agreement problem
�see �DM�� �PSL�� is an example of a strict simultaneous choice� This problem consists
of an action a� of �deciding 
� and an action a� of �deciding 	�� Each set �j of possible
inputs consists of two possible inputs� one starting with initial value 
 and receiving no
further external input during the run� and the other starting with initial value 	� The
condition pro�a�� is that all initial values are 
� and the condition pro�a�� is that all
initial values are 	� The conditions con�a�� and con�a�� are both taken to be false� Here
the condition enabled�a�� is that some initial value is 
� and the condition enabled�a�� is
that some initial value is 	� Since for most assignments of initial values both enabled�a��
and enabled�a�� hold� it is typically the case that deciding either 
 or 	 is acceptable�
Simultaneous Byzantine agreement is a strict simultaneous choice� since the processors
are required to decide either 
 or 	 in every run� Other related problems that may also be
formulated as �strict� simultaneous choice problems include weak Byzantine agreement
and the Byzantine Generals problem �see �F���

Having formally de�ned the notion of a simultaneous action� we are now in a position
to carefully state the relationship between simultaneous actions and common knowledge
mentioned in the introduction� When a simultaneous action is performed� it is common
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knowledge that the action is being performed� The statement we actually prove is that
when such an action is performed� it is common knowledge that the action is enabled�

Lemma �� Let � be a run of a protocol implementing a simultaneous choice C� If
the action ai of C is performed by a nonfaulty processor at time � in �� then ��� �� j�
CNenabled�ai��

Proof� Let � be the fact �ai is being performed by a nonfaulty processor�� A processor pj
performing the action ai clearly knows that it is performing ai� This processor therefore
also knows that if it is nonfaulty then ai is being performed by a nonfaulty processor�
Since � is a run of a protocol implementing C� the action ai is performed simultaneously
by all nonfaulty processors whenever it is performed by a single nonfaulty processor�
It follows that whenever � holds� so does EN�� and hence � 	 EN� is valid in the
system� The induction rule implies that � 	 CN� is valid in the system as well� Notice
that � 	 enabled�ai� is valid in the system� It thus follows that CN� 	 CNenabled�ai�
is valid in the system� and hence so is � 	 CNenabled�ai�� Thus� ��� �� j� � implies
��� �� j� CNenabled�ai�� and we are done�

In the above proof� the essential fact that � 	 EN� is valid in the system depends
crucially on our de�nition of EN�� A processor p performing ai knows that ai is being
performed� but since a nonfaulty processor might not know that it is nonfaulty� p might
not know that ai is being performed by a nonfaulty processor� The processor p does know�
however� that if it �p itself� is nonfaulty� then a nonfaulty processor is performing ai� It
is for this reason that we have been led to choose our de�nition of EN� as we have� as
discussed in the previous section�

� Optimal Protocols

In this section� we show how to extract a high�level optimal protocol for a simultaneous
choice problem directly from its speci�cation� �As mentioned in the introduction� we use
the word optimal as shorthand for optimal in all runs� recall that this optimality is in
terms of the number of rounds required to perform a simultaneous choice�� We begin by
considering a simple class of protocols that will serve as a building block in the design
of such optimal protocols� Recall that a protocol is a function specifying the actions
a processor should perform and the messages it should send as a function of n� t� and
the processor�s view� Thus� we can think of a protocol as having two components� an
action component and a message component� A protocol is said to be a full�information

protocol �cf� �Ha�� �FL�� �PSL�� if its message component is�

repeat every round
send current view to all processors

forever�
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Intuitively� since such a protocol requires that all processors send all of the information
available to them in every round� one would expect this protocol to give each processor as
much information about the operating environment as any protocol could� In particular�
the following result shows that if a processor cannot distinguish two operating environ�
ments during runs of a full�information protocol� then the processor cannot distinguish
these operating environments during runs of any other protocol�

Lemma �� Let � and �� be runs of a full�information protocol F � and let � and � � be runs
of an arbitrary protocol P corresponding to � and ��� respectively� For all processors q
and times �� if v�q� �� �� � v�q� ��� �� then v�q� �� �� � v�q� � �� ���

Proof� We proceed by induction on the time �� The case of � � 
 is immediate since q
must have the same initial state in both � and ��� and hence also in � and � �� Suppose
� � 
 and the inductive hypothesis holds for all processors p at time �� 	� The view of q
at time � is determined by its view at time �� 	� the �external� input it receives during
round �� and the messages it receives during round �� Since q has the same view at time
��	 in � and ��� by the inductive hypothesis� the same is true in � and � �� Since q receives
the same input during round � in � and ��� the same is true in � and � �� If q does not
receive a message from p during round � in � and ��� then both operating environments
determine that no message from p to q during round � is delivered� Thus� q does not
receive a message from p during round � in either � or � �� If q does receive a message
from p during round � in � and ��� then both operating environments determine that any
message from p to q during round � is delivered� If q receives a message from p during
round � of � and ��� then since q must receive the same message from p in both � and ���
the view of p must be the same at time � � 	 in � and ��� By the inductive hypothesis�
p�s view at time � � 	 must also be the same in � and � �� Since P is a deterministic
function of processor views� q receives the same messages from p during round � in �
and � �� Thus� q has the same view at time � in � and � ��

Thus� roughly speaking� processors learn the most about the operating environment
during runs of full�information protocols� The following corollary of Lemma � shows
that facts about the operating environment become common knowledge during runs of
such protocols at least as soon as they do during runs of any other protocol� This result
captures in a precise sense a property of full�information protocols that is essential to
our analysis�

Corollary �� Let � be a fact about the operating environment� Let � and � be corre�
sponding runs of a full�information protocol F and an arbitrary protocol P� respectively�
If ��� �� j� CN� then ��� �� j� CN��

Proof� Suppose that ��� �� j� CN�� We will prove that ��� �� j� CN� by showing that
���� �� j� � for all runs �� of F such that ��� �� � ���� ��� Fix ��� and let � � be the run of P
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corresponding to ��� Lemma � and a simple inductive argument on the distance between
��� �� and ���� �� in the similarity graph show that ��� �� � ���� �� implies ��� �� � �� �� ���
Since ��� �� j� CN�� we have �� �� �� j� �� Since corresponding runs satisfy the same
facts about the operating environment� �� �� �� j� � implies ���� �� j� �� It follows that
��� �� j� CN��

We are now in a position to describe how to construct optimal protocols for simulta�
neous choice problems� Recall that when a simultaneous action ai is performed� Lemma �
implies that enabled�ai� must be common knowledge� Since enabled�ai� is a fact about the
operating environment� Corollary � implies that enabled�ai� becomes common knowledge
in runs of a full�information protocol as soon at it does in corresponding runs of any other
protocol� Thus� given an e�ective test that the nonfaulty processors can use to determine
whether enabled�ai� is common knowledge� a test we denote by test�for�CNenabled�ai��
the following protocol FC is an optimal protocol for C�

no action performed � true�

repeat every round

if no action performed and test�for�CN enabled�ai� returns true for some ai
then

j � min fi � test�for�CN enabled�ai� returns trueg�
perform aj�
no action performed� false�

send current view to every processor�

forever�

Before formally proving that FC is an optimal protocol� we must de�ne more formally
the tests for common knowledge that appear in FC� Recall that the �xpoint axiom
implies CN� 	 ENCN� is valid� This guarantees that CN� follows from the view of each
nonfaulty processor whenever CN� holds� Notice� that CN� is not guaranteed to follow
from the view of a faulty processor� It is therefore natural to de�ne a test for common

knowledge of �� denoted as above by test�for�CN�� to be a test that� given the view of a
nonfaulty processor at ��� �� �together with n and t�� returns true i� CN� holds at ��� ���
Such a test may return either true or false when given the view of a faulty processor�
Let us denote by Aj��� �� the set of actions ai such that test�for�CN enabled�ai� returns
true when given the view of pj at ��� ��� Notice that if pj is nonfaulty� then Aj��� �� is
precisely the set of actions ai such that CNenabled�ai� holds at ��� ��� It follows that for
all nonfaulty processors pj the sets Aj are equal at all times� In particular� all become
nonempty at the same time �as soon as enabled�ai� becomes common knowledge for
some ai�� Thus� if all processors pj choose the action of least index from Aj as soon as
this set becomes nonempty� as required by FC� then all nonfaulty processors choose the
same action simultaneously� We can now prove that FC is an optimal protocol for C�
�Recall that a simultaneous choice problem is implementable i� there exists a protocol
that implements it��
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Theorem 	� If C is an implementable simultaneous choice problem� then FC is an opti�
mal protocol for C�

Proof� We �rst prove that nonfaulty processors perform actions in runs of FC as soon as
they do in corresponding runs of any protocol implementing C� Let � be a run of FC� and
let � be the corresponding run of a protocol implementing C� Lemma � implies that if ai
is performed by a nonfaulty processor at time � in �� then ��� �� j� CNenabled�ai�� Since
enabled�ai� is a fact about the operating environment� Corollary � implies that ��� �� j�
CNenabled�ai�� As a result� Aj��� �� must be nonempty for all nonfaulty processors pj�
and hence each must perform an action in � no later that time �� It follows that nonfaulty
processors perform actions in runs of FC as soon as they do in corresponding runs of any
protocol implementing C� We now show that FC actually implements C� Let � be a
run of FC� First� it is obvious from the de�nition of FC that each nonfaulty processor
performs at most one action in �� �If C is an implementable strict simultaneous choice�
then the preceding discussion shows that the nonfaulty processors perform exactly one
action in ��� Second� if a nonfaulty processor pj performs an action ai at time � during ��
then time � is the �rst time at which Aj��� k� is nonempty� and ai is the action of least
index in this set� Since Aj��� k� � Am��� k� for all nonfaulty processors pm� the same
is true for all nonfaulty processors� As a result� all nonfaulty processors must choose to
perform ai simultaneously at time �� Third� if � satis�es pro�ai�� then the run � of any
protocol implementing C corresponding to � must satisfy pro�ai�� and hence ai must be
performed in �� As we have already seen� an action must also be performed in �� Since
pro�ai� 	 �enabled�aj� for all j �� i� the set Aj��� k� of a nonfaulty processor pj must
contain no action other than ai �if it contains any action at all�� Thus� ai must be the
action performed in �� Finally� if � satis�es con�ai�� then � does not satisfy enabled�ai��
and no set Aj��� �� for any nonfaulty processor pj contains ai� Thus� ai is not performed
in �� It follows that FC implements C�

As a result of Theorem �� we see that full�information protocols can be used as the
basis of optimal protocols for simultaneous choice problems� Thus� we will restrict our
attention to full�information protocols in the remainder of this paper� Unless otherwise
speci�ed� all protocols mentioned will be full�information protocols� and all runs will be
runs of such protocols� More important� however� a consequence of Theorem � is that
designing an optimal protocol for a simultaneous choice problem C essentially reduces to
testing for common knowledge of certain facts� In order to design an optimal protocol
for C� it is enough to construct the tests for common knowledge of the facts enabled�ai��
We note that the fundamental property of common knowledge underlying the existence
of such tests is the fact that CN� 	 EN� is valid� that is� when � becomes common
knowledge� the fact that � is common knowledge will follow from the view of every non�
faulty processor� The problem of implementing such tests is the subject of the following
section�

Before ending this section� however� we consider the size of messages required by
a full�information protocol F � Such a protocol requires processors to send their entire
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Figure 	� Communication graphs�

view during every round� Since� strictly speaking� the size of a processor�s view may be
exponential in the number of rounds elapsed� this protocol seems to require processors
to send messages of exponential length� We now show� however� that there is a simple�
compact representation of a processor�s view that may be sent instead� Consequently� it
will be possible to implement all full�information protocols �and in particular the optimal
protocol FC� in a communication�e�cient way in all variants of the omissions model�

Given a run � of F � the communication graph of � �see Figure 	� represents the mes�
sages delivered in �� It is a layered graph �with one layer corresponding to every natural
number� representing time on the global clock� in which each processor is represented by
one node in every layer� We denote the node representing processor p at time � by hp� �i�
Edges connect nodes in adjacent layers� with an edge between hp� k � 	i and hq� ki i� a
message from p is delivered to q during round k� The labeled communication graph is ob�
tained by labeling the layer 
 nodes of the communication graph with processors� names
and initial states� and by labeling the layer k nodes �for k � 
� with the requests the
processors receive from external clients during round k� We note in passing that� since �
is a run of the full�information protocol F � its labeled communication graph uniquely
determines its operating environment� For every point ��� ��� we denote by G��� �� the
�rst ��	 layers of the labeled communication graph of �� representing the �rst � rounds
of �� For example� illustrated in Figure 	�a� is a graph G��� �� depicting the �rst � rounds
of a run �� We say that G��� �� has length ��

Informally� at every point ��� �� of a run of F � a processor pi�s view corresponds
to a certain subgraph Gi��� �� of G��� ��� For example� the subgraph G���� �� of G��� ��
is illustrated in Figure 	�b�� We de�ne the subgraph Gi��� �� of G��� �� inductively as
follows� For � � 
 the subgraph Gi��� 
� consists of the labeled node hpi� 
i� For � � 

the subgraph Gi��� �� consists of the labeled node hpi� �i� the subgraph Gi��� � � 	�� the
edges from layer ��	 nodes to hpi� �i� and the subgraphs Gj��� ��	� for every layer ��	
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node hpj � � � 	i adjacent to hpi� �i� Given a set S of processors� it is convenient to denote
by GS��� �� the union of the graphs Gi��� �� for every pi � S� We remark that GS��� ��
uniquely determines Gi��� �� for every pi � S� The next lemma states that a processor�s
view of the labeled communication graph uniquely determines its view of the run�

Lemma 
� Let � and �� be runs of a full�information protocol F � For every processor pi
and time �� v�pi� �� �� � v�pi� ��� �� i� Gi��� �� � Gi���� ���

Proof� We proceed by induction on �� The case of � � 
 is immediate� Suppose � � 

and the inductive hypothesis holds for �� 	�

Suppose pi has the same view at time � in both � and ��� This implies� in particular�
that pi has the same view at time � � 	 in � and ��� and from the inductive hypothesis
it follows that Gi��� � � 	� � Gi���� � � 	�� In addition� this implies that pi must receive
the same input during round � in � and ��� and hence hpi� �i is labeled with the same
input in Gi��� �� and Gi���� ��� If pi does not receive a message from a processor pj during
round � in � and ��� then there is no edge from hpj � � � 	i to hpi� �i in either Gi��� �� or
Gi���� ��� If pi does receive a message from a processor pj during round � in � and ���
then it receives the same message in both runs� and pj must have the same view at
time �� 	 in both runs� Hence� there is an edge from hpj � �� 	i to hpi� �i in both Gi��� ��
and Gi���� ��� and by the inductive hypothesis we have that Gj��� � � 	� � Gj���� � � 	��
Thus� Gi��� �� � Gi���� ���

Conversely� suppose Gi��� �� � Gi���� ��� It follows that Gi��� � � 	� � Gi���� � � 	��
and by the inductive hypothesis pi has the same view at time � � 	 in � and ��� The
node hpi� �i must be labeled with the same input in Gi��� �� and Gi���� ��� so pi receives
the same input during round � in � and ��� The edges from layer � � 	 nodes to hpi� �i
are the same in Gi��� �� and Gi���� ��� so pi receives messages from the same processors
during round � in � and ��� Again� Gj��� � � 	� � Gj���� � � 	� for every node hpj � �� 	i
adjacent to hpi� �i� and by the inductive hypothesis pj has the same view at time � � 	
in � and ��� Since a protocol is a deterministic function of processor views� pi receives
the same messages during round � in � and ��� It follows that pi has the same view at
time � in both � and ���

Lemma � implies that a processor�s view of the run and a processor�s view of the cor�
responding labeled communication graph convey the same information� Given either the
graph Gi��� �� or the view v�pi� �� ��� reconstructing the other is straightforward� There�
fore� an equivalent implementation of a full�information protocol requires the processors
to send the labeled communication graphs corresponding to their views instead of send�
ing their complete views� From now on� we will use the term full�information protocol to
refer to this equivalent form� It is easy to see that the size of Gi��� �� is polynomial in
the number of processors n� the global time �� and the size of the requests received from
external clients� It follows that messages required by a full�information protocol are of
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polynomial size�� Furthermore� given the labeled communication graphs corresponding
to the views at time � � 	 of the processors that send messages to a given processor pi
during round �� it is easy to construct the labeled communication graph corresponding
to pi�s view at time �� Thus� the use of such compact representations of a processor�s
view is computationally e�cient as well as communication e�cient� Finally� recall that
we have formally de�ned a test for common knowledge to be a function of processor views
�as well at n and t�� In light of the preceding discussion� there is no loss of generality
in assuming that such a test is a function of communication graphs corresponding to
processor views� We now turn to the problem of implementing such tests�

� Testing for Common Knowledge

The previous section established the claim that tests for common knowledge provide a
very powerful programming technique� The design of optimal protocols for simultaneous
choice problems reduces to implementing tests for common knowledge of certain facts�
In this section we investigate the problem of implementing tests for common knowledge
in the di�erent variants of the omissions model� With such tests� we will be able to
construct optimal protocols for simultaneous choice problems in these models� As we will
see� properties of the di�erent variants of the omissions model cause dramatic di�erences
in the complexity of testing for common knowledge� In addition� the optimal protocols
we construct will have interesting properties that vary according to the failure model�

Recall that a protocol is a function that� given the number of processors n� the bound t
on the number of faulty processors� and a processor�s view� yields a list of the actions
the processor should perform� as well as the messages it should send in the next round�
�Thus� the protocols we are interested in are uniform in n and t�� Since the protocols we
will be concerned with are full�information protocols� processors� views will be e�ciently
representable by labeled communication graphs� We will soon restrict our attention to
simultaneous choice problems in which the external requests are of constant size� This
restriction implies that processors� views at time � will be of size polynomial in n and ��
A protocol will therefore determine the messages and actions required at time � based
on input of size polynomial in n and �� Consequently� we will measure the complexity of
computations performed by protocols at time � in systems of n processors as a function
of n and �� By polynomial time� polynomial space� etc�� we will mean polynomial in n
and ��

The de�nition of simultaneous choice problems presented in Section � is very general�
So general� in fact� that it is possible to de�ne simultaneous choice problems with a
variety of anomalous properties� For example� it is possible to de�ne a simultaneous
choice problem in which pro�a� is the fact � � �the �rst round in which p receives an

�In the Byzantine failure models in which processors are allowed to lie �or maliciously deviate from
the protocol�� however� such compact representations are not guaranteed to exist� cf
 �C�


	




external request is a round whose number is the index of a halting Turing machine� �in
some a priori well�de�ned enumeration of Turing machines�� and con�a� is ��� Clearly�
since it is undecidable whether � holds even given the view of p after it receives its �rst
request� it will also be undecidable which of CN� or CN�� holds when processor p�s
view becomes common knowledge� It follows that this simultaneous choice problem
cannot be e�ectively implemented by a computable protocol� Similarly� one can construct
simultaneous choice problems in which evaluation of the conditions is intractable� rather
than undecidable as in the above example� It is also possible to introduce anomalies by
de�ning the sets �i of external inputs in strange ways� Since we are not interested in
problems involving such inherent anomalies� we will avoid them by making restrictions
on the relevant facts and the inputs arising in the simultaneous choice problems we will
consider in the sequel�

We �rst de�ne the class of practical facts� which will be used to restrict the conditions
that specify a simultaneous choice problem� Roughly speaking� one essential property of
a practical fact � is that it is easy to determine from a processor�s view whether a run
satis�es �� More formally� we denote by �GS��� ��� the property of being a run �� such that
GS��� �� � GS���� ��� Consequently� if GS��� �� 	 � is valid in a system� then every run ��

of the system satisfying GS��� �� � GS���� �� must also satisfy �� In this case� we say that
GS��� �� determines �� Notice� for example� that no �nite labeled communication graph
GS��� �� can determine that a run is failure�free �since the run is in�nite� and a failure
can always happen outside the �nite scope depicted by the graph�� With this notion in
mind� a fact � is said to be practical within a class of systems f��n� t� � n � t� �g if the
following conditions hold� �i� � is a fact about the input and the existence of failures� and
�ii� there is a polynomial�time algorithm to determine� given n� t� and a graph GS��� ��
of a point of ��n� t�� whether GS��� �� 	 � is valid in ��n� t�� The �rst condition is
justi�ed by the fact that we will be testing for common knowledge of the conditions
enabled�ai� arising from natural simultaneous choice problems� and such conditions are
typically conditions on the input and existence of failures� The second condition ensures
that it is easy to test whether a labeled communication graph determines that the fact
holds� �We make this restriction since it would clearly be unreasonable to expect the
processors to be able to e�ciently identify and act based on facts that are intractable to
compute from the labeled communication graph��

We now consider a natural restriction on the sets �i of possible inputs� A class of
systems is said to be practical if there are two �xed �nite sets S and M of initial states
and external requests� respectively� such that each �i in all systems of the class is the set
of complete input histories whose initial state is in S� and in which the input received in
every round is a subset of M � This condition ensures that the input sets are of a simple
form� In particular� it implies that all �i�s are identical� and that the input received by
a processor during any given round is of constant size�

Having de�ned the notions of practical facts and practical classes of systems� we say
that a simultaneous choice C is practical if �i� the class of systems determined by a full�
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information protocol and C is practical� and �ii� each condition enabled�ai� is practical
within this class of systems� Essentially all natural simultaneous choice problems are
practical� In particular� all simultaneous choice problems appearing in the literature
are practical� Our analysis will hence be restricted to testing for common knowledge
of practical facts and to designing and implementing optimal protocols for practical
simultaneous choice problems� We remark� however� that our analysis will apply to a
more general class of simultaneous choice problems� whose precise characterization is
somewhat complicated�

In Section � we programmed protocols for simultaneous choice problems in a high�
level language in which processors� actions depend on explicit tests for common knowl�
edge� Recall that test�for�CN enabled�ai� is a test nonfaulty processors can use to de�
termine whether enabled�ai� is common knowledge� Given the graph corresponding to
the view of a nonfaulty processor at ��� �� as input� test�for�CN enabled�ai� returns true
i� ��� �� j� CNenabled�ai�� Theorem � implies that given such a test for each condition
enabled�ai�� the protocol FC is an optimal protocol for C� Until this point� however� we
have sidestepped the issue of whether such tests actually exist� With the next lemma we
see that� for practical simultaneous choice problems� such tests can be implemented in
polynomial space�

Lemma �� If C is a practical simultaneous choice problem� then for each action ai the
test test�for�CN enabled�ai� can be implemented in polynomial space�

Proof� We must prove the existence of an algorithm test�for�CN enabled�ai� determining
in polynomial space whether enabled�ai� is common knowledge at ��� ��� given as input n�
t� and the graph Gj��� �� corresponding to the view of a nonfaulty processor pj at ��� ���
We will actually exhibit a nondeterministic� polynomial�space algorithm Ai determining
whether enabled�ai� is not common knowledge at ��� ��� Since NPSPACE�PSPACE and
PSPACE is closed under complementation �see �HU��� the existence of the algorithm Ai

implies the existence of an algorithm test�for�CNenabled�ai�� Let f��n� t� � n � t� �g
be a class of systems determined by a full�information protocol and the problem C� We
claim that such an algorithm Ai need only guess a point �
� ��� and show both that
��� �� � �
� �� and that G�
� �� 	 enabled�ai� is not valid in ��n� t�� To see this� notice
that since G�
� �� 	 enabled�ai� is not valid in the system� there must be a point �
�� ��
such that G�
� �� � G�
�� �� and �
�� �� �j� enabled�ai�� Construct the run with the input
of 
� in which processors fail precisely as they do in 
 for the �rst � rounds� and in which
no processor fails after time �� Let � be a run obtained by adding to this run a single
failure after time � i� there is a failure in 
�� Since � and 
� must satisfy the same facts
about the input and existence of failures� �
�� �� �j� enabled�ai� implies ��� �� �j� enabled�ai��
Since at least one nonfaulty processor in 
 is nonfaulty in �� and also has the same view
at time � since G��� �� � G�
� ��� we have �
� �� � ��� ��� Therefore� ��� �� � ��� �� and
��� �� �j� enabled�ai�� and it follows that ��� �� �j� CNenabled�ai��
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We now describe the algorithm Ai in greater detail� Notice that since C is practical�
the input received by a processor in every round of a run of ��n� t� is of constant size�
and hence it is possible to construct the labeled communication graph of any point of
��n� t� in polynomial space� The algorithm Ai begins by constructing the graph G���� ��
of a run �� by adding to the graph Gj��� �� received as input all edges not recorded as
missing in Gj��� ��� Notice that since pj is nonfaulty in �� it is nonfaulty in �� as well�
and hence ��� �� � ���� ��� The algorithm Ai then shows that ���� �� � �
� �� �and hence
that ��� �� � �
� ��� in polynomial space by constructing one by one the graph G��i� ��
of each point ��i� �� in a path from ���� �� to �
� �� in the similarity graph� For each pair
of points ��i��� �� and ��i� ��� the algorithm shows that some nonfaulty processor pk has
the same view at both points by choosing pk� exhibiting for each point an assignment of
faulty processors �consistent with their respective graphs� in which pk is nonfaulty� and
showing that pk has the same view at both points by verifying Gk��i��� �� � Gk��i� ���
Finally� since enabled�ai� is a practical fact� Ai can show in polynomial time �and hence
in polynomial space� that G�
� �� 	 enabled�ai� is not valid in the system ��n� t��

It is important to realize that Lemma 
 holds in all variants of the omissions model�
The failure model is a parameter of a simultaneous choice problem� and we have made
no assumptions restricting the failure model in this result� We note that the proof of
Lemma 
 actually shows that testing for common knowledge of any practical fact can
be done in polynomial space� In fact� the proof shows that such tests have e�ective
implementations even when the algorithm determining whether G��� �� 	 enabled�ai� is
valid does not run in polynomial time �although the problem must still be decidable��
In this case� however� the test is guaranteed to run in polynomial space only if this
computation can be performed using polynomial space� The most important consequence
of Lemma 
� however� is that practical simultaneous choice problems have polynomial�
space optimal protocols�

Theorem ��� If C is an implementable practical simultaneous choice problem� then
there is a polynomial�space� optimal protocol for C�

With Theorem 	
 we see that practical simultaneous choice problems do have e�ective
optimal protocols� In general� however� connected components in the similarity graph
may be of exponential size� and paths in such components may be of exponential length�
It therefore follows that the polynomial�space protocol given by Theorem 	
 requires
the processors to perform exponential�time computations between consecutive rounds of
communication� The resulting protocol is therefore clearly not a reasonable protocol to
use in practice� A crucial question at this point is whether there are e	cient optimal
protocols for simultaneous choice problems� Recall that we have already seen that optimal
protocols can be implemented in a way that makes e�cient use of communication� The
rest of the paper is devoted to investigating ways of implementing tests for common
knowledge in variants of the omissions model in a computationally�e�cient manner� and
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therefore of implementing e�cient� optimal protocols for simultaneous choice problems
in these models�

��� The Omissions Model

In this section we consider the problem of e�ciently implementing tests for common
knowledge in the omissions failure model� In particular� we develop a construction that
crisply characterizes the connected component of a point in the similarity graph� This
construction determines a subgraph of the labeled communication graph with the prop�
erty that two points are similar i� their respective subgraphs are identical� As stated in
Theorem �� the connected component of a point in the similarity graph completely de�
termines what facts are common knowledge at that point� As a result� this construction
enables us to devise e�cient tests for common knowledge� and hence e�cient protocols
for simultaneous choice problems that are optimal in all runs�

Dwork and Moses address in �DM� the problem of implementing tests for common
knowledge in the crash failure model� In the crash failure model� processors fail by
crashing� that is� faulty processors may successfully send messages to some processors
during their failing round� but will not successfully send any messages in any later round�
As a result� a faulty processor is �out of the game� after its failing round� and no longer
contributes to the knowledge of the remaining processors� The analysis performed by
Dwork and Moses focuses on the notion of a clean round� a round in which no processor
crashes� In runs of a full�information protocol� a clean round ensures that all nonfaulty
processors receive the same set of messages� After such a round� all nonfaulty processors
have an identical view of the part of the run that precedes the clean round� Dwork
and Moses show that facts about the initial con�guration become common knowledge
exactly when it becomes common knowledge a clean round has occurred� Dwork and
Moses complete their analysis by characterizing when this happens� In the omissions
model� however� a faulty processor may continue to contribute to the knowledge of the
nonfaulty processors� even after its �rst failing round� since it may fail intermittently in
later rounds as well� The situation is therefore more complicated� and clean rounds no
longer play the same role here as they do in the crash failure model� Furthermore� to the
best of our understanding� there is no direct analog to the notion of a clean round in the
omissions model� The approach used by Dwork and Moses in the crash failure model�
therefore� does not seem to extend to this model� As a result� we are forced to take a
di�erent approach�

Our approach to the problem of testing for common knowledge during runs of a
full�information protocol is motivated by a careful analysis of what facts do not become
common knowledge�� �Unless otherwise mentioned� all protocols referred to in this sec�

�As mentioned in the introduction� since the technical details of the proofs in this section may make
it di�cult to obtain a high�level understanding of our approach� we encourage the reader to skip the
proofs on the �rst reading
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tion will be full�information protocols�� We begin with a technical result� similar to
Lemma 	� of �DM�� saying that simple modi�cations of a processor�s faulty behavior
preserve similarity� and hence what facts are common knowledge� Throughout the re�
mainder of this paper it will be convenient to refer to runs di�ering only in some aspect
of their operating environments� Given two runs � and �� of a protocol F � we will say
that � di�ers from �� only in a certain aspect of the operating environment if � is the
result of executing F in an operating environment that di�ers from that of �� only in the
said aspect� Notice that while their operating environments may be similar� the messages
sent in the two runs may actually be quite di�erent� We say that a processor is silent

from time k if it fails to send every message in every round following time k�

Lemma ��� Let � and �� be runs di�ering only in the �faulty� behavior displayed by
processor p after time k� and suppose no more than f processors fail in either � or ��� If
� � k � t� 	 � f � then ��� �� � ���� ���

Proof� If k � � then G��� �� � G���� ��� and Lemma � implies that ��� �� � ���� ���
Therefore� assume k � �� We proceed by induction on j � � � k� Without loss of
generality� we may assume that � and �� actually di�er in the faulty behavior of p� and
hence that p fails in one of these runs� Notice that since p already fails in one of these
runs and yet no more than f processors fail in either run� it is clear that at most f � t
processors fail in any run di�ering from either run only in the faulty behavior of p�

Suppose j � 	 �that is� k � ��	�� Since t � n�� and since � and �� di�er only in the
behavior of p� there are two processors q and r �other than p� that do not fail in either
run� Let �r be the run di�ering from � only in that p sends to r during round � of �r i�
it does so in �� �and notice that �r may actually be equal to ��� Since q�s view at time �
is independent of whether p sends to r during round �� we have ��� �� � ��r� ��� Since
G��r� �� and G���� �� di�er only in the messages that p sends to processors other than r
in round �� and r�s view at ��r� �� is independent of whether p sends to the remaining
processors during round �� we have ��r� �� � ���� ��� Thus� by the transitivity of ���� we
have ��� �� � ���� ���

Suppose j � 	 �that is� k � ��	� and the inductive hypothesis holds for j�	� Let �i
be the run di�ering from � only in that for each processor q in fp�� � � � � pig processor p
sends to q during round k � 	 in �i i� it does so in ��� Notice that � � �� and �� � �n�
We will show that ��� �� � ��i� �� for all i � 
� Since �n di�ers from �� only in the faulty
behavior of p after time k�	� and since �� �k�	� � j�	� it will follow by the inductive
hypothesis for j�	 that ��n� �� � ���� ��� Finally� by the transitivity of ���� we will have
��� �� � ���� �� as desired�

We now proceed by induction on i to show that ��� �� � ��i� �� for all i � 
� The case
of i � 
 is trivial� Suppose i � 
 and the inductive hypothesis holds for i � 	� that is�
��� �� � ��i��� ��� Notice �i�� and �i di�er at most in whether p sends a message to pi
during round k�	� Let 
 be the run di�ering from �i�� in that pi is silent from time k�	
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Figure �� Runs illustrating Lemma 	��

in 
� Suppose no more than g processors fail in either �i�� or 
� Notice that g � f � 	�
Therefore� since 	 � � � k � t� 	 � f we have f � t and g � t� so at most t processors
fail in 
� Furthermore� �� �k � 	� � t� 	� �f � 	� � t� 	� g� Since� in addition� �i��
and 
 di�er only in the faulty behavior of pi after time k�	� the inductive hypothesis for
j � 	 implies ��i��� �� � �
� ��� Now� since pi is silent from time k � 	 in 
� the view of a
nonfaulty processor at �
� �� is independent of whether p sends to pi during round k� 	�
so �
� �� � �
�� �� where 
� di�ers from 
 in that p sends to pi during round k �	 in 
� i�
it does so in �i� Again� the inductive hypothesis for j � 	 implies that �
�� �� � ��i� ���
By the transitivity of ���� it follows that ��� �� � ��i� ���

While Lemma 		 is a technical lemma in the context of this work� it has a number of
interesting consequences in its own right� In particular� the �t�	��round lower bound on
the number of rounds required for simultaneous Byzantine agreement is an immediate
corollary of this lemma� The resulting proof of this lower bound is perhaps the simplest
to appear in the literature �see �DM� for details�� More important� however� is the fact
that two corollaries of Lemma 		 enable us to characterize the connected components of
the similarity graph� Consider the runs �� and �� of Figure �� where we indicate only
faulty behavior� solid lines indicate silence� and dashed lines indicate sporadic faulty
behavior� Notice that f processors fail in ��� In the following lemma we show that
���� �� � ���� �� where �� di�ers from �� only in that processors failing in �� are silent
in �� from time k� where k � �� �t� 	� f�� This implies� for instance� that the views
at time k of processors failing in �� are not common knowledge at time � since these
processors are silent from time k in ���

Lemma ��� Let �� be a run in which f processors fail� Let �� be the run di�ering from ��
only in that processors failing in �� are silent from time k in ��� where k � �� �t� 	� f��
Then ���� �� � ���� ���
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Figure �� Runs illustrating Lemma 	��

Proof� Let q�� � � � � qf be the faulty processors in ��� Let 
i be the run di�ering from �� in
that processors q�� � � � � qi are silent from time k in 
i� Notice that �� � 
� and �� � 
f � We
proceed by induction on i to show that ���� �� � �
i� �� for all i� The case of i � 
 is trivial�
Suppose i � 
 and the inductive hypothesis holds for i � 	� that is� ���� �� � �
i��� ���
Since 
i�� and 
i di�er at most in the faulty behavior of qi after time k� it follows by
Lemma 		 that �
i��� �� � �
i� ��� By the transitivity of ���� we have ���� �� � �
i� ���

Before discussing the second lemma� we make an important de�nition� Given a point
��� k� and a set of processors G� let

B�G� �� k�
def
� fp � ��� k� j� IG��p is faulty��g �

By this de�nition� B�G� �� k� is the set of processors implicitly known by G at ��� k�
to be faulty� An important property of the omissions failure model is that processors
fail only by failing to send messages� It follows that G implicitly knows at ��� k� that a
processor p is faulty i� G implicitly knows at ��� k� of some processor q not receiving a
message from p before time k� that is� GG��� k� contains no edge from hp� �� 	i to hq� �i
for some node hq� �i of GG��� k�� It is therefore simple and straightforward to compute
B�G� �� k� given GG��� k��

The essence of the second lemma is captured by the runs �� and �� of Figure �� In the
run ��� the f faulty processors are silent from time k � �� �t� 	� f�� The set G is the
set of nonfaulty processors and B � B�G� ��� k�� The run �� di�ers from �� only in that
processors in P � B do not fail in ��� The following lemma states that ���� �� � ���� ���
This implies� for instance� that the failure of processors in P � B cannot be common
knowledge at ���� �� since they do not fail in ��� Formally� we have �see Figure ���

Lemma ��� Let �� be a run in which the f faulty processors are silent from time k �
� � �t� 	� f�� Let G be the set of nonfaulty processors in ��� and let B � B�G� ��� k��
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Let �� be the run di�ering from �� only in that processors in P � B do not fail� Then
���� �� � ���� ���

Proof� If a processor p in P � B fails to a processor q during some round j � k of ��
�in which case it must be that p � P �B �G�� then the node hq� ji must not be a node
of GG���� k� or the failure of p would be implicitly known by G at time k and p would be
in B� a contradiction� Thus� GG���� k� is independent of whether G���� k� contains an edge
from p to q during round j� Let ��� be a run di�ering from �� only in that no processor
in P �B fails before time k in ���� By the previous discussion� GG���� k� � GG����� k�� In
both �� and ��� every processor in G successfully sends every message after time k and
every processor in P �G is silent from time k� Since� in addition� every processor in G
receives the same input after time k in �� and ���� we have GG���� �� � GG����� ��� Given
that G is the set of nonfaulty processors in ��� each of which is also nonfaulty in ���� it
follows by Lemma � that ���� �� � ����� ��� Since the runs ��� and �� di�er only in the
faulty behavior of processors in P �B after time k� by repeated application of Lemma 		
it follows that ����� �� � ���� ��� Hence� ���� �� � ���� ���

Having seen Lemmas 	� and 	�� let us consider how these results suggest a charac�
terization of the similarity graph� and hence of what facts are common knowledge at
a given point� Going back to Figures � and �� notice that if f � � f �which implies�
referring to Figure �� that not all f processors failing in �� are implicitly known at time
k � � � �t � 	 � f� to be faulty�� then by setting ��� � �� we can apply Lemmas 	�
and 	� again �this time starting from ��� instead of ���� Iterating this process� we reach
a run  � satisfying ���� �� � � �� ��� where the  f processors failing in  � are silent from time
 k � � � �t � 	 �  f�� and where all faulty processors are implicitly known to be faulty
by the nonfaulty processors at � ��  k�� This run  � is a �xpoint of this iterative process�
setting  �� �  �� the runs  �� and  �� constructed in Lemmas 	� and 	� are identical to  ��
It is the joint view of the nonfaulty processors at � ��  k�� we claim� that characterizes the
connected component of ���� �� in the similarity graph� and hence what facts are common
knowledge at ���� ��� In order to make this claim precise� we now de�ne a local version
of this iterative process� illustrated in Figure �� that processors can use to construct this
joint view locally�

Let p be an arbitrary processor� We de�ne G� � fpg and k� � �� and we de�ne Gi	�

and ki	� inductively as follows� Denoting B�Gi� �� ki� by Bi� let

Gi	� � P �Bi

ki	� � � � �t� 	 � jBij��

Notice that when ki	� � 
� the view at time ki	� of every processor in Gi	� is the
distinguished empty view� and hence Bi	� must be empty� As a consequence� for all
j � i � 	� we have that Gj � P � kj � � � �t � 	�� and Bj is empty� This construction
determines three �in�nite� sequences fGig� fkig� and fBig� In the next few pages we will
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Figure �� An example of the construction when t � 
�

see that these sequences have limits  G�  k� and  B� and that these limits are independent
of the processor with which the construction is begun� As a result� individual processors
will be able to construct these values based solely on their local view� We will see
that the joint view of  G at time  k completely characterizes the connected component
of ��� �� in the similarity graph� and hence what facts are common knowledge at ��� ���
This construction will therefore provide an e�cient way of determining what facts are
common knowledge at a given point�

Among other things� this construction captures a number of essential aspects of the
information !ow during the run up to time �� In particular� one important property of
this construction is the following�

Lemma ��� Every processor in Gi	� successfully sends to every processor in Gi in every
round before time ki�

Proof� Suppose some processor q of Gi	� fails to send to a processor q� of Gi during
a round before time ki� Then q�s failure to q� is implicitly known by Gi at time ki� so
q � Bi and q �� Gi	�� a contradiction�

One consequence of Lemma 	� is that the view of the processor p at time � must
contain the view of every processor in Gi at time ki for every i � 
� Thus� one essential
property of the construction is that it depends only on the view of processor p at ��� ���
and hence that p is able to perform the construction locally� A second essential property
of the construction is that it converges within t�	 iterations� as we see with the following
result�

Lemma ��� lim
i��

Gi � Gt	� and lim
i��

ki � kt	��
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Proof� We will show that Bi	� � Bi for all i � 
� Since B� contains at most t processors�
it will then follow that there must be an i � t for which Bi � Bi	�� From the de�nition
of the construction� it is easy to see that we will have Bi � Bi	j for all j � 
� In addition�
we will have Gi	� � Gi	�	j and ki	� � ki	�	j for all j � 
� and we will be done� We
proceed by induction on i� If ki	� � 
� then Bi	� is empty and Bi	� � Bi� so let us
assume ki	� � 
� Suppose i � 
� By Lemma 	�� every processor in G� must send to
every processor in G� during round k� � 	� It follows that any failure implicitly known
by G� at time k� must be implicitly known by G� at time k�� Thus� B� � B�� Suppose
i � 
 and the inductive hypothesis holds for i � 	� that is� Bi � Bi��� If Bi � Bi���
then Bi	� � Bi� If Bi � Bi��� then ki	� � ki� By Lemma 	�� Gi	� sends to Gi during
round ki	� � 	� so Bi	� � Bi�

We denote the results of the construction �the limits of the sequences fGig� fkig� and
fBig� by  G�  k� and  B� We denote these values by  G�p� �� ���  k�p� �� ��� and  B�p� �� �� when
the processor p and the point ��� �� are not clear from context� We now show� however�
that these values are independent of processor p�

Lemma ��� For all processors p and q�  G�p� �� �� �  G�q� �� �� and  k�p� �� �� �  k�q� �� ���

Proof� We prove the claim by showing that  B�p� �� �� �  B�q� �� ��� Given that Bi

uniquely determines Gi	� and ki	�� this will imply the desired result� It su�ces to show
that  B�p� �� �� �  B�q� �� ��� since the other direction will follow by symmetry� Denote the
intermediate results of the construction from the point ��� �� starting with the processor p
by Gi� ki� and Bi� and the �nal results by  G�  k� and  B� Similarly� denote the intermediate
results of the construction starting with q by G�i� k

�
i� and B�

i� and the �nal results by  G��
 k�� and  B�� We now show that  B �  B�� If  k � 
� then  B is empty and  B �  B�� so assume
 k � 
� We consider two cases� First� suppose  k � � � 	� In this case�  B must contain t
faulty processors since  k � � � �t� 	 � j  Bj�� It follows that every processor in  G must
be nonfaulty in � and hence must send to G�� during round  k � 	� so  B � B�

�� Since� in
addition� jB�

�j � t and j  Bj � t� we have  B � B�
�� It follows from the construction that

 B � B�
i for every i � 
� and hence that  B �  B �� Now� suppose  k � � � 	� Let r be an

�arbitrary� nonfaulty processor in �� We claim that every processor g in  G must send its
view to r during round  k�	� Suppose some processor g in  G does not� Let j be the least
integer such that  G � Gj � If j � 	� then r must send to G� during round  k��� If j � 	�
then r must actually be a member of Gj�� since Gj�� must contain all of the nonfaulty

processors� In either case� the failure of g to r during round  k � 	 must be implicitly
known by Gj�� at time kj��� so g � Bj��� Since  G � Gj � P �Bj��� we have g ��  G� a

contradiction� Thus� every processor in  G must send to r during round  k � 	� We now
proceed by induction on i to show that  B � B�

i for all i � 
� Suppose i � 
� Every
processor in  G must send to the nonfaulty processor r during round  k � 	� and r must
send to G�� during round  k � �� so  B � B�

�� Suppose i � 
 and the inductive hypothesis
holds for i� 	� that is�  B � B �

i��� If  B � B�
i��� then  B � B�

i� If  B � B �
i��� then

 k � k�i

�




since  k � � � �t � 	 � j  Bj� and k�i � � � �t � 	 � jB�
i��j�� Every processor in  G must

send to the nonfaulty processor r during round  k �	� and r must be contained in G�i� so
 B � B�

i� It follows that  B � B�
i for all i � 
� and hence  B �  B��

As a result of Lemma 	�� we see that  G�  k� and  B depend only on the point ��� ��� and
not the processor with which the construction begins� Thus� a third essential property of
this construction is that every processor �and not just the nonfaulty processors� is able to
compute locally the values of  G�  k� and  B� We will denote these values by  G��� ���  k��� ���
and  B��� �� when ��� �� is not clear from context� From the de�nition of the construction
it is clear that the driving force behind the construction is the identity of the sets Bi�
Notice that these sets are uniquely determined by the failure pattern� and do not depend
on the run�s input� Taking into account the input of a run� we are now in a position
to show how the construction characterizes the connected components in the similarity
graph� Denoting  G��� �� by  G and  k��� �� by  k� we de�ne

 V ��� ��
def
� v�  G� ��  k��

This de�nition says that  V ��� �� is the joint view of the processors in  G��� �� at time
 k��� ��� Our next lemma implies that  V is the same at similar points� which implies that
the joint view  V ��� �� is common knowledge at ��� ���

Lemma �	� If ��� �� � ���� �� then  V ��� �� �  V ���� ���

Proof� We proceed by induction on the distance d between the points ��� �� and ���� ���
The case of d � 
 is trivial� Suppose that d � 
 and the inductive hypothesis holds
for d � 	� Since the distance between ���� �� and ��� �� is d� there must be a point �
� ��
whose distance from ��� �� is d � 	� and whose distance from ���� �� is 	� The inductive
hypothesis implies that  V ��� �� �  V �
� ��� and we must have v�p� 
� �� � v�p� ��� �� for
some processor p� As a consequence of Lemmas 	� and 	�� the values of  V �
� �� and
 V ���� �� depend only on the view of p at �
� �� and ���� ��� respectively� Since p has the
same view at �
� �� and at ���� ��� we have  V �
� �� �  V ���� ��� Since  V ��� �� �  V �
� ��� it
follows that  V ��� �� �  V ���� ���

One consequence of Lemma 	�� together with Lemma � and the de�nition of  V above�
is that if ��� �� � ���� ��� then G 
G

���  k� � G 
G
����  k�� We will �nd this a useful fact when

proving the converse of Lemma 	�� that is� that all points with the same  V are similar�
and hence that  V completely characterizes the connected components of the similarity
graph� Before we do so� however� we formalize the reasoning by which Lemmas 	� and 	�
motivated consideration of the construction in the �rst place�

Lemma �
� Let � be a run� and let  G�  k� and  B be the results of the construction from
��� ��� Let �� be the run di�ering from � only in that processors in  G do not fail in �� and
processors in  B are silent from time  k in ��� Then ��� �� � ���� ���

�




Proof� Let Gi� ki� and Bi be the intermediate results of the construction from ��� ��
starting with the nonfaulty processor pj� For i � 
� de�ne �i to be the run di�ering from
the run � only in that processors in Bi are silent from time ki in �i and the remaining
processors do not fail in �i� Notice that �� � �i for su�ciently large i� We proceed by
induction on i to show that ��� �� � ��i� �� for all i � 
� Suppose i � 
� Since the
subgraph Gj��� �� must be independent of whether the graph G��� �� is missing an edge
from a processor in P � B� to a processor other than pj � we have Gj��� �� � Gj���� k���
Since processor pj is nonfaulty� it follows that ��� �� � ���� ��� Suppose i � 
 and
the inductive hypothesis holds for i � 	� that is� ��� �� � ��i��� ��� Lemma 	� implies
��i��� �� � ���i��� �� where �

�
i�� di�ers from �i�� in that processors in Bi�� �the processors

failing in �i��� are silent from time ki in ��i��� Lemma 	� implies ���i��� �� � ��i� ��� Thus�
��� �� � ��i� ���

Finally� we have the following�

Lemma ��� If  V ��� �� �  V ���� �� then ��� �� � ���� ���

Proof� The fact  V ��� �� �  V ���� �� implies  G��� �� �  G���� ���  k��� �� �  k���� ��� and
 B��� �� �  B���� ��� We therefore denote these values by  G�  k� and  B� Let � be a run
that di�ers from � in that processors in  G do not fail in �� and processors in  B are silent
from time  k in �� Let � � be an analogous run with respect to ��� Lemma 	� implies that
��� �� � ��� �� and ���� �� � �� �� ��� In order to show that ��� �� � ���� ��� it is enough
to show that ��� �� � �� �� ��� Suppose  G � fq�� � � � � qsg� and let �i be the run di�ering
from � in that q�� � � � � qi receive the same input after time  k in �i as they do in � �� We
proceed by induction on i to show that ��� �� � ��i� �� for all i � 
� Since � � ��� the
case of i � 
 is trivial� Suppose i � 
 and the inductive hypothesis holds for i� 	� that
is� ��� �� � ��i��� ��� Let 
i�� and 
i be runs di�ering from �i�� and �i� respectively� only
in that qi is silent from time  k in 
i�� and 
i� Lemma 		 implies ��i��� �� � �
i��� ��
and ��i� �� � �
i� ��� In addition� since 
i�� and 
i di�er only in the input received by qi
after time  k� and since qi is silent from time  k in both runs� we have �
i��� �� � �
i� ���
Thus� ��� �� � ��i� �� for all i � 
� In particular� ��� �� � ��s� ��� In order to complete
the proof� it now su�ces to show that ��s� �� � �� �� ��� Since G 
G

���  k� � G 
G
����  k��

��� �� � ��� ��� and ���� �� � �� �� ��� Lemma 	� implies that G 
G���
 k� � G 
G��

��  k�� Notice

that G 
G��s�
 k� � G 
G���

 k� � G 
G��
��  k�� Notice� in addition� that processors in  G do not

fail in either �s or � �� and that the remaining processors �in  B� are silent from time  k
in both runs� Finally� notice that processors in  G receive the same input after time  k in
both runs� It follows that G 
G

��s� �� � G 
G
�� �� ��� and hence that ��s� �� � �� �� ��� Thus�

��� �� � �� �� ��� as desired�

Combining Lemmas 	� and 	
 we see that ��� �� � ���� �� i�  V ��� �� �  V ���� ��� We
therefore have�

Theorem ��� ��� �� j� CN� i� ���� �� j� � for all �� satisfying  V ��� �� �  V ���� ���

�	



It follows that  V ��� �� in a precise sense summarizes and uniquely determines the set
of facts that are common knowledge at any given point ��� ��� The identity of  V can
be thought of as being composed of two components� The identity of  G and  k� and the
information about the input that is contained in the joint view  V � The de�nition of the
construction implies that the identities of  G and  k depend only on the failure pattern�
and hence carry only information about the failure pattern� The fact that  V becomes
common knowledge implies that certain information about the failure pattern must be�
come common knowledge� It is di�cult� however� to characterize the facts about the
failure pattern that follow from the identity of  G and  k� On the other hand� information
about the input that follows from the views in  V does characterize in a crisp way what
facts about the input are common knowledge� Furthermore� it is easy to deduce from  V
whether the existence of a failure is common knowledge� As the following corollary will
show� Theorem �
 implies that facts about the input and existence of failures that are
common knowledge at the point ��� �� must follow directly from the set  V ��� ��� We now
make this statement precise� A run �� a set of processors G� and a time k determine
a joint view V � v�G� �� k�� We denote by �V � the property of being a run in which
the processors in G have the joint view V at time k �notice that G and k are uniquely
determined by V �� Thus� if V 	 � is valid in the system� then every run �� satisfying
v�G� ��� k� � V must also satisfy �� We now have�

Corollary ��� Let � be a fact about the input and the existence of failures� and let
V �  V ��� ��� Then ��� �� j� CN� i� V 	 � is valid in the system�

Proof� Let V �  V ��� ��� Suppose V 	 � is valid in the system� By Lemma 	�� we have
 V ��� �� �  V ���� �� for all runs �� such that ��� �� � ���� ��� and hence that ���� �� j� V for
all such ��� Given that V 	 � is valid in the system� we have ���� �� j� � for all such ���
It follows that ��� �� j� CN��

For the other direction� suppose that V 	 � is not valid in the system� Since V 	 �
is not valid in the system� let 
 be a run such that �
� �� j� V and yet �
� �� �j� �� We
will construct a run � such that ��� �� � ��� ��� � and 
 have the same input� and � and 

are the same with respect to the existence of failures �i�e�� � will be failure�free i� 
 is��
Since � is a fact about the input and the existence of failures� �
� �� �j� � will imply
��� �� �j� �� Since� in addition� ��� �� � ��� ��� we will have that ��� �� �j� CN��

We construct � in two steps� We �rst construct a run � with the input of 
 satisfying
��� �� � ��� ��� Let � be the run with the failure pattern of � and the input of 
� Given
that � and � have the same failure pattern� and that  G and  k depend only on the
failure pattern� we have that  G��� �� �  G��� �� and  k��� �� �  k��� ��� Let us denote
these values by  G and  k� Since �
� �� j� V � we have v�  G� ��  k� � v�  G� 
�  k�� and hence
G 
G���

 k� � G 
G�
�
 k�� Since � and � have the same failure pattern� the unlabeled graphs

underlying G 
G���
 k� and G 
G���

 k� �and hence also G 
G�
�
 k�� are the same� Furthermore�

since � and 
 have the same input� it follows that G 
G���
 k� and G 
G�
�

 k� �and hence

��



also G 
G���
 k�� are equal� Since G 
G���

 k� � G 
G���
 k� implies  V ��� �� �  V ��� ��� we have

��� �� � ��� �� by Lemma 	
�

We now consider the existence of failures� and construct the desired run �� If there is
a failure in 
� then let � be a run di�ering from � only in that a processor fails after time �
in �� Clearly ��� �� � ��� ��� and hence ��� �� � ��� ��� Conversely� if 
 is failure�free� then
let � � 
� Since 
 is failure�free� no processor in  G knows of a failure at time  k in 
�
Since processors in  G have the same view at time  k in both 
 and �� the same is true
of �� It follows that  B � B�  G� ��  k� is empty� and since  G � P �  B� we have that  G � P �
Notice that � di�ers from � only in that processors in  G � P do not fail in �� and hence
that ��� �� � ��� �� by Lemma 	�� Therefore� ��� �� � ��� ��� In either case� ��� �� � ��� ���
� and 
 have the same input� and are the same with respect to the existence of failures�
It follows by the above discussion that ��� �� �j� CN��

Corollary �	 summarizes the sense in which the construction allows us to test whether
relevant facts are common knowledge at a given point� Let us consider the computational
complexity of performing such tests� The �rst step in applying Corollary �	 to determine
whether a fact is common knowledge at ��� �� is to construct  V ��� ��� Recall that a
group of processors implicitly knows that a processor is faulty i� it knows of a message
the processor failed to send� This is an easy fact to check given the communication
graph corresponding to the group�s view� It follows that computing every iteration of the
construction can easily be done in polynomial time� Furthermore� since the construction
is guaranteed to converge within t� 	 iterations� it follows that  G and  k� and hence also
 V can be computed locally in polynomial time �as long as  V is of polynomial size�� Recall
that if � is a practical fact� then it is possible to determine in polynomial time whether or
not V 	 � is valid in the system� Thus� given a practical simultaneous choice problem C�
one polynomial�time implementation of a test for common knowledge of enabled�ai� is to
construct the set V �  V and determine whether V 	 enabled�ai� is valid in the system�
As a result� Theorem � implies the following�

Theorem ��� If C is an implementable� practical simultaneous choice� then there is a
polynomial�time optimal protocol for C�

We reiterate the fact that the resulting protocol for C is optimal in all runs� actions
are performed in runs of FC as soon as they could possibly be performed in runs of
any other protocol� given the operating environment of the run� Thus� for example�
simultaneous Byzantine agreement is performed in anywhere between � and t�	 rounds�
depending on the pattern of failures �as is shown in �DM� to be the case in the crash failure
model�� Similarly� the �ring squad problem can be performed in anywhere between 	
and t� 	 rounds after a �start� signal is received� Paradoxically� in all these cases� the
simultaneous actions can be performed quickly only when many failures become known
to the nonfaulty processors� In particular� if there are no failures� no fact about the input
is common knowledge less than t� 	 rounds after it is �rst determined to hold�
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Notice that every processor� faulty or nonfaulty� is able to compute the set  V ��� ��
locally� As a result� the following proposition shows that a fact is common knowledge to
the nonfaulty processors i� it is common knowledge to all processors�

Proposition ��� Let � be an arbitrary fact� In the omissions model� CN� � CP� is
valid in all systems running a full�information protocol�

Proof� By Theorem �� it is enough to show that ��� ��
P

� ���� �� i� ��� ��
N

� ���� �� for all
runs � and �� and times �� The "if� direction is trivial� since N � P � The proof of the
other direction is identical to the proof of Lemma 	�� interpreting � as

P

��

Proposition �� implies that all processors �even the faulty processors� know exactly
what actions are commonly known to be enabled in runs of FC� Thus� in this model the
protocol FC is guaranteed to satisfy a stronger version of simultaneous choice problems�
in which condition �ii� is replaced by

�ii�� if ai is performed by any processor �faulty or nonfaulty�� then it is performed by
all processors simultaneously�

Furthermore� since when an action is performed it is performed simultaneously by all
processors� and since no other action is ever performed� there is no need for processors
to continue sending messages after performing actions in runs of FC in this model� We
can therefore further reduce the communication of FC by having processors halt after
performing a simultaneous action� As a result� the following is an optimal protocol for
any implementable simultaneous choice problem C� an optimal protocol simpler than the
protocol FC�

repeat every round

send current view to every processor

until CNenabled�ai� holds for some ai�
j � min fi � CNenabled�ai� holdsg�
perform aj�
halt�

The fact that in the omissions model the information in  V ��� �� is essentially all that
is common knowledge at a given point has interesting implications about the type of
simultaneous actions that can be performed in this model� For example� recall that in
the traditional simultaneous Byzantine agreement or consensus problems �see �PSL�� �F��
�DM��� the processors are only required to decide� say� v in case they all start with an
initial value of v� It would be more pleasing� however� if they could decide v whenever
the majority of initial values are v� This is clearly impossible� since some processors may
be silent throughout the run� However� consider a protocol for simultaneous Byzantine
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agreement which is similar to FC� except that when some enabled�ai� becomes common
knowledge �which happens exactly when  V becomes non�empty�� the processors choose
the value that appears in the majority of the initial values recorded in  V ��� �� as their
decision value� In this case� the processors actually approximate majority fairly well� If
more than �n � t��� of the initial values are v� then v will be chosen� In fact� we can
show that the approximation is bad only in runs in which agreement is obtained early� In
particular� if agreement cannot be obtained before time t�	 �this would happen in runs �
for which  V ��� �� contains only empty views for every � � t�� then the value agreed upon
would be the majority value in case more than n�� � 	 of the processors have the same
initial value� Furthermore� a protocol for weak �exact� majority does exist� A protocol
that either decides that there was a failure or decides on the true majority value�

Since messages from faulty processors can convey new information about the failure
pattern� such messages do a�ect the construction� Therefore� the behavior of faulty
processors� even after they have been discovered to be faulty� plays an important role
in determining what facts become common knowledge and when� In the crash failure
model� however� a failed processor does not communicate with other processors after its
failing round and has little impact on what facts become common knowledge� This is an
essential property of the omissions model operationally distinguishing it from the crash
failure model�

We note� however� that all of the analysis in this subsection applies to the crash failure
model� with all of the proofs applying verbatim when restricted to the crash failure model�
We thus have�

Proposition ��� In the crash failure model� ��� �� j� CN� i� it is the case that ���� �� j�
� for all �� satisfying  V ��� �� �  V ���� ���

Thus� the set  V ��� �� completely characterizes what facts are common knowledge at the
point ��� �� in the crash failure model as well� Since the same proofs show that the
construction characterizes the connected components of the similarity graph in both the
omissions and the crash failure model� the similarity graph in the omissions model is
simply an extension of the similarity graph in the crash failure model� maintaining the
same connected components� This implies that in a run of the omission model having
a failure pattern consistent with the crash failure model� exactly the same facts about
the input and the existence of failures are common knowledge at any given time in both
the crash failure and the omissions model� �However� as a result of the di�erence in the
types of failures possible in the two failure models� di�erent facts about the failure pattern
are common knowledge at the corresponding points�� Ruben Michel has independently
characterized the similarity graph in variants of the crash failure model �see �Mi��� For
the crash failure model itself� he has an alternative construction that also characterizes
the connected components of the similarity graph�
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As in the omissions model� it follows from Proposition �� that our construction can be
used to derive e�cient optimal protocols for simultaneous choice problems in the crash
failure model� thus slightly extending �DM�� We therefore have the following�

Corollary ��� Let C be an implementable� practical simultaneous choice� In the crash
failure model� there is a polynomial�time optimal protocol for C�

As a �nal remark� let ki and Gi be the intermediate results of beginning the construc�
tion at the point ��� ��� and denote v�Gi� �� ki� by Vi� Consider the operator E de�ned by
E�Vi� � Vi	� for all i� We �nd it interesting that  V � which is the greatest �xpoint of the
operator E� characterizes the facts � for which CN� holds� where we know from �HM�
that CN� is the greatest �xpoint of X � EN �� 
X��

��� Receiving Omissions

In the omissions model� faulty processors fail only to send messages� In this subsection�
we consider the symmetric receiving omissions model� in which faulty processors fail
only to receive messages� While at �rst glance these models seem quite similar� they are
actually extremely di�erent� In particular� we will see that testing for common knowledge
in this model becomes trivial� As a result� there are simple� e�cient optimal protocols
for practical simultaneous choice problems in this model�

One intriguing di�erence between the omissions model and the receiving omissions
model is the following� We have seen in the omissions model that in some cases a fact
�for example� the arrival of a �start� signal� does not become common knowledge until
as many as t� 	 rounds after it is �rst determined to hold� Intuitively� the attainment
of common knowledge is delayed by the possibility that a processor might fail to send a
message determining that the fact holds� However� in the receiving omission model even
faulty processors send all message required by the protocol� Since nonfaulty processors
receive all messages sent to them� in runs of a full�information protocol all nonfaulty
processors have a complete view of the �rst k rounds at time k � 	� We can thus show
the following�

Theorem ��� Let � be a fact about the �rst k rounds� In the receiving omissions model�
��� k� j� � i� ��� k � 	� j� CN��

The proof of this result depends on the notion of a fact being valid at time k� A fact � is
said to be valid �in the system� at time k if for all runs � we have ��� k� j� �� We remark
that the following variant of the induction rule holds�

If � 	 ES� is valid at time k�
then � 	 CS� is valid at time k�
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Proof� Since � is a fact about the �rst k rounds� ��� k� j� � i� ��� k � 	� j� �� Thus� it
is enough to show that ��� k � 	� j� � i� ��� k � 	� j� CN�� Clearly� ��� k � 	� j� CN�
implies ��� k�	� j� �� Conversely� suppose ��� k�	� j� �� During round k�	 in � every
processor sends its entire view to all processors� so at time k�	 all nonfaulty processors
have a complete view of the �rst k rounds of �� Since � is a fact about the �rst k rounds�
��� k�	� j� EN�� We have just shown that � 	 EN� is valid at time k�	� so � 	 CN�
is valid at time k � 	 as well� Thus� ��� k � 	� j� � implies ��� k � 	� j� CN��

As a consequence of Theorem ��� polynomial�time optimal protocols for practical
simultaneous choice problems are very simple in this model� Again� by polynomial�time
here we will mean polynomial in n� t� and the round number ��

Corollary �	� Let C be an implementable� practical simultaneous choice� In the receiv�
ing omissions model� there is a polynomial�time optimal protocol for C�

Proof� Since C is implementable� Theorem � implies that FC is an optimal protocol for C�
It remains to show that FC can be implemented in polynomial time� Since the messages
sent by FC can clearly be computed in polynomial time� we need only show how to
implement the tests for common knowledge of the conditions enabled�ai� in polynomial
time� We claim that ��� �� j� CNenabled�ai� i� G��� � � 	� 	 enabled�ai� is valid in
the system� Since C is a practical simultaneous choice problem� determining whether
G��� � � 	� 	 enabled�ai� is valid in the system can be done in polynomial time� As
G��� � � 	� can be determined by all nonfaulty processors at ��� �� in polynomial�time�
this will yield a polynomial�time implementation of a test for common knowledge of
enabled�ai�� and we will be done� Suppose G��� � � 	� 	 enabled�ai� is valid in the
system� Theorem �� implies that G��� � � 	� is common knowledge at ��� ��� and it
follows that ��� �� j� CNenabled�ai�� Conversely� suppose ��� �� j� CNenabled�ai�� Let �
be a run satisfying G��� �� 	�� A proof similar to the base case of Lemma 		 shows that
��� �� � ��� ��� Since ��� �� j� CNenabled�ai�� it follows that ��� �� j� enabled�ai�� Thus�
G��� �� 	� 	 enabled�ai� is valid in the system� as desired�

The results of this section point out a number of interesting di�erences between the
omissions model and the receiving omissions model� For example� consider the distributed
�ring squad problem� First� Theorem �� implies that all nonfaulty processors are able
to �re in the receiving omission model exactly one round after the �rst �start� signal is
received� Recall that in the omissions model� �ring may delayed as many as t�	 rounds�
Second� since a faulty processor p might fail to receive all messages� it is not possible
to guarantee that p will ever �re following the receipt of a �start� signal by a nonfaulty
processor� In the omissions model we have shown that it is possible to guarantee that
all processors perform any action �e�g�� ��ring�� performed by the nonfaulty processors�
Finally� notice that faulty processors may sometimes be unable to halt� or terminate
their participation in a distributed �ring squad protocol� even long after the nonfaulty
processors have �red� A processor p receiving no messages or �start� signals at all can
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never halt since at any point it is possible �according to p�s view� that it will be the only
processor in the system to receive a �start� signal� In this case� optimal protocols must
require the nonfaulty processors to �re one round later� and hence p must be able to
send this information to the nonfaulty processors� In contrast� in the omissions model it
is possible to guarantee that all processors halt as soon as an action is performed in the
system� These remarks show that while at �rst glance the assignment of responsibility
for undelivered messages to sending or to receiving processors may seem arbitrary� the
assignment has a dramatic e�ect on when facts become common knowledge� and hence
on the behavior of optimal protocols� Since such a simple modi�cation of the omissions
model results in the collapse of the combinatorial structure underlying the model �witness
Theorem ���� we consider this to be an indication that the omissions model is not a robust
model of failure�

��� Generalized Omissions

We have just seen that the choice of whether sending or receiving processors are respon�
sible for undelivered messages has a dramatic e�ect on the structure of the omissions
model� Perhaps a more natural model of failure is the generalized omissions model� in
which a faulty processor may fail both to send and to receive messages� This section
is concerned with the design of optimal protocols for simultaneous choice problems in
this model� We have seen that Theorem � implies the protocol FC is an optimal pro�
tocol in this model� and that Theorem 	
 implies this protocol can be implemented in
polynomial�space� As in previous sections� the remaining question is whether there are
e�cient optimal protocols in this model� The principal result of this section is that test�
ing for common knowledge in the generalized omissions model in NP�hard� Using the
close relationship between common knowledge and simultaneous actions� we obtain as a
corollary that optimal protocols for most any simultaneous choice problem in this model
require processors to perform NP�hard computations� Consequently� for example� in this
model there can be no e�cient optimal protocol for simultaneous Byzantine agreement
or the distributed �ring squad problem� This is a dramatic di�erence between the gen�
eralized omissions model and the more benign failure models� where� as we have seen�
e�cient optimal protocols do exist�

One important di�erence between the generalized omissions model and simpler vari�
ants of the omissions model is that in the generalized omissions model undelivered mes�
sages do not necessarily identify the set of faulty processors� but merely place constraints
on their possible identities� Either the sender or the intended receiver of every unde�
livered message must be faulty� The faulty processors must therefore induce a �vertex
cover� of the undelivered messages� Recall that in our analysis of the omissions failure
model� determining the number and the identity of the faulty processors given the la�
beled communication graph of a point played a crucial role in characterizing the facts
that are common knowledge at a point� In that model� a processor is known to be faulty
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i� it is known that a message it was supposed to send was not delivered� a fact easily
determined from the labeled communication graph� In the generalized omissions model�
however� even determining the number �and not necessarily the identities� of processors
implicitly known to be faulty essentially involves computing the size of the minimal vertex
cover of a graph� a problem known to be NP�complete �see �GJ��� It is with this intu�
ition that we now proceed to show that determining whether certain facts are common
knowledge is computationally prohibitive in the generalized omissions model� assuming
P��NP�

However� in order to study the complexity of testing for common knowledge in the
generalized omissions model in a meaningful way� we are once again faced with the need
to restrict our attention to a class of facts that includes all of the facts that may arise in
natural simultaneous choice problems� and excludes anomalous cases� For example� if �
is valid in the system� then so is CN�� and testing whether � is common knowledge is a
trivial task� On the other hand� one can imagine facts involving excessive computational
complexity of a type irrelevant to simultaneous choice problems� Consider� for instance� a
fact � with the property that the communication graph of any point satisfying � encodes
information allowing the solution of all problems in NP of size smaller than the number
of processors in the system� Whereas it seems unlikely that such a fact exists� this fact
is probably very hard to prove� and is de�nitely not the business of this paper to do�
We are therefore led to make the following restriction� A fact � is said to be admissible

within a class of systems running a full�information protocol if �i� for all systems within
this class neither � nor �� is valid in the system� and �ii� there is a polynomial�time
algorithm explicitly constructing for each system a labeled communication graph G��� ��
of minimal length having the property that G��� �� 	 � is valid in the system� We say that
a simultaneous choice problem C is admissible if each condition enabled�ai� is admissible
within the class of systems determined by a full�information protocol and C� We claim
that any natural simultaneous choice is admissible� We can now state the fundamental
result of this section which says� loosely speaking� that testing for common knowledge of
admissible facts ��� � � � � �s is NP�hard�

Lemma �
� Let ��� � � � � �s be admissible� practical facts within a class of systems run�
ning a full�information protocol in the generalized omissions model� Given the graph
G��� �� of a point in such a system with n � �t� the problem of determining whether
��� �� j�

W
i CN�i is NP�hard �in n��

The proof of Lemma �� will follow shortly� Notice� however� that t is variable in
the statement of this lemma� and in general may be O�n�� The proof of this result
will not apply for a �xed t� nor to cases in which t is restricted� say� to be O�log n�� In
any case� it will follow that any standard implementation of our optimal knowledge�based
protocols must be computationally intractable� unless P�NP� It is natural to ask whether
this ine�ciency is merely the result of having programmed our protocols using tests for
common knowledge� It is conceivable� for instance� that there are optimal protocols
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for admissible simultaneous choice problems in the generalized omissions model that
are computationally e�cient� Intuitively� however� in order to perform a simultaneous
action� an optimal protocol P must essentially determine whether any of the conditions
enabled�ai� is common knowledge� Corollary � implies that such a condition becomes
common knowledge during the corresponding run of a full�information protocol as soon
as it does during a run of P� Thus� P must essentially determine whether such a fact
is common knowledge during the corresponding run of a full�information protocol F �
Since Lemma �� implies that this problem is NP�hard� computing the function P must
be NP�hard as well� We now make this argument precise�

Recall that a protocol is formally a function mapping n� t� and a processor�s view to
a list of the actions the processor should perform� followed by a list of the messages it
is required to send in the following round� We say that a protocol is communication�

e	cient if in a system of n processors the size of the messages each processor is required
to send during round � is polynomial in n and �� In the following result we show that the
problem of computing the function corresponding to a communication�e�cient optimal
protocol for a simultaneous choice problem is NP�hard� Hence� no such protocol can be
computationally e�cient�

Theorem ��� Let P be a communication�e�cient� optimal protocol for an admissible�
practical simultaneous choice C� The problem of computing �the function� P is NP�hard
�in n��

Proof� Notice that since P is a protocol for C� the problem C must be implementable�
and Theorem � implies that the full�information protocol FC must be an optimal protocol
for C� Let � � f��n� t� � n � t� �g be the class of systems determined by C and FC�
Since C is an admissible� practical simultaneous choice� each condition enabled�ai� must
be an admissible� practical fact within �� By Lemma ��� given the graph G��� �� of
a point ��� �� in a system ��n� t� with n � �t� the problem of determining whether
��� �� j�

W
i CNenabled�ai� is NP�hard� We will exhibit a Turing reduction from this

problem to the problem of computing P� that is� given the graph G��� �� of a point ��� ��
in a system ��n� t� with n � �t� we will show how to use P to determine in polynomial
time whether ��� �� j�

W
iCNenabled�ai�� Having exhibited such a reduction� we will have

shown that the problem of computing P is NP�hard�

Let � be a run of FC in a system ��n� t� with n � �t� and let � be the corresponding
run of P� It follows from the de�nition of FC that ��� �� j�

W
i CNenabled�ai� i� the

nonfaulty processors perform a simultaneous action no later than time � in �� Since FC

and P are both optimal protocols for C� the nonfaulty processors perform simultaneous
actions at the same times during � and �� Since n � �t� there must be at least t � 	
nonfaulty processors in both runs� so the nonfaulty processors simultaneously perform
an action no later than time � in either run i� t�	 processors do so� Therefore� ��� �� j�W
iCNenabled�ai� i� t� 	 processors perform a simultaneous action no later than time �

in ��
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One algorithm for determining whether t � 	 processors do perform a simultaneous
action no later than time � in � is to construct the view of each processor in � at each
time k before time �� and use P to determine when processors are required to perform
actions� Suppose we have constructed the view of each processor at time k�	 in �� let us
consider the problem of constructing the view of a processor p at time k� Processor p�s
view at ��� k� consists of p�s name� the time k� a list of the messages received by p during
the �rst k rounds of �� and a list of the input received by p during the �rst k rounds
of �� Recall that since � is a run of full�information protocol� the graph G��� �� is actually
an encoding of the operating environment during the �rst � rounds of �� and hence also
of �� Given the views of all processors at time k � 	� the protocol P determines what
message each processor is required to send to p� and G��� �� determines which of these
messages are actually delivered to p in �� Since P is communication�e�cient� each of
these messages is of size polynomial in n and k� Furthermore� the input received by p
during round k labels the node hp� ki of G��� ��� Since C is practical� this input is of
constant size� Thus� given each processor�s view at time k � 	� we can use the graph
G��� �� and an oracle for P to construct the view of each processor at time k of � in
polynomial time� �An oracle for P is an oracle that� given the view of a processor p at a
point ��� ��� in one step determines what actions P requires p to perform at time �� and
constructs the messages P requires p to send during round �� 	��

Consider the following algorithm�

action performed � false�

k � 
�
repeat

for all processors p do
determine whether P requires p to perform any action at time k� and
construct the messages P requires p to send during round k � 	�

endfor

if t� 	 processors perform actions at time k
then action performed � true�

k � k � 	�
until k � � or action performed�

if action performed

then halt with �yes�

else halt with �no��

From the previous discussion it is clear that given any oracle for P� this algorithm
determines in polynomial time whether t� 	 processors perform actions simultaneously
no later than time � in �� and hence whether ��� �� j�

W
i CNenabled�ai��

As an immediate corollary of Theorem �
� we have the following�

�	



Corollary ��� Let C be an admissible practical simultaneous choice problem� If there
is a polynomial�time optimal protocol for C� then P�NP�

Corollary �
 implies that optimal protocols for simultaneous choice problems as simple
as the distributed �ring squad problem or simultaneous Byzantine agreement are com�
putationally infeasible in the generalized omissions model� assuming P �� NP� In fact�
we do not know whether these problems can be implemented in polynomial time even
using an NP oracle� The best we can do in the generalized omissions model is implement
them using polynomial�space computations� as in the proof of Theorem 	
� We consider
the question of determining the exact complexity of implementing admissible practical
simultaneous choice problems in this model an interesting open problem�

We now proceed to prove Lemma ��� First� however� we state a result that will be
very useful in the proof of Lemma ��� Roughly speaking� it says that if a group of
processors can �jointly� prove that they are nonfaulty� then their views become common
knowledge at the end of the following round�

Lemma ��� Let S be a set of processors and let S � P � S� Let � be a run of a full�
information protocol� If the processors in S implicitly know at ��� ��	� that S contains t
faulty processors� then the joint view of S at ��� � � 	� is common knowledge at ��� ���

Proof� Let � � �V is the joint view of S at time � � 	�� where V � v�S� �� � � 	��
Suppose ���� �� j� �� Given that S has the same joint view at ��� �� 	� and at ���� �� 	��
and since S implicitly knows at ��� ��	� that S contains t faulty processors� S implicitly
knows the same at ���� �� 	�� In particular� the processors in S must be nonfaulty in ���
and each must successfully send its view to all processors during round � of ��� Since all
nonfaulty processors will receive these messages� we have ���� �� j� EN�� It follows that
� 	 EN� is valid at time �� and the induction rule implies � 	 CN� is valid at time � as
well� Thus� ��� �� j� � implies ��� �� j� CN��

�We note in passing that a converse to Lemma �	 is also true� If the joint view at
time � � 	 of a set S of processors is common knowledge at time �� then the processors
in some set S� � S must implicitly know at time � � 	 that there are t faulty processors
among the members of S

�
��

In addition to Lemma �	� the following result� analogous to Lemma 		 in the omissions
model� will be of use in the proof of Lemma ���

Lemma ��� Let � and �� be runs di�ering only in the �faulty� behavior displayed by
processor p after time k� and suppose no more that f processors fail in either � or ��� If
� � k � t� 	 � f � then ��� �� � ���� ���
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Proof� The proof is analogous to the proof of Lemma 		� with the added observation
that if p sends no messages after �an arbitrary� time k in �� then ��� �� � �� �� �� where � �

di�ers from � in that p receives messages from an arbitrary set of processors during
round k�

Finally� as previously mentioned� the proof of Lemma �� involves a reduction from
the Vertex Cover problem� This is the problem �see �GJ�� of determining� given a graph
G � �V�E� and a positive integer M � whether G has a vertex cover of size M or less�
that is� a subset V � V such that jVj � M and� for each edge fv�wg � E� at least one
of v or w belongs to V�

Theorem �Karp�� Vertex Cover is NP�complete�

We now prove Lemma ���

Proof of Lemma �
� We will exhibit a Turing reduction from Vertex Cover to
the problem of testing for common knowledge of ��� � � � � �s� and it will follow that this
problem is NP�hard�

Since every graph G � �V�E� is jV j�coverable� the following is an algorithm for Vertex
Cover�

m� jV j�
while G has a vertex cover of size m� 	 do

m� m� 	�
if m �M

then return �G has a vertex cover of size M�

else return �G has no vertex cover of size M��

To implement this test� it is enough to implement a test that� given an m�coverable
graph G� determines whether G is �m � 	��coverable� Every graph G � �V�E� clearly
has a vertex cover of size jV j�	� In addition� it is possible to determine whether G has a
vertex cover of size jV j�� in polynomial time� Similarly� it is easy to determine whether G
has a vertex cover of size 
 in polynomial time� We show that if 	 � m � jV j � � and G
is m�coverable� then it is possible to construct in polynomial time a graph G��� �� with
the property that ��� �� j�

W
i CN�i i� G is not �m � 	��coverable� The point ��� �� will

be a point of a system ��n� t� with n � �t from the class under consideration �i�e�� the
class of systems running a full�information protocol in the generalized omissions model��
Thus� given an oracle for testing for common knowledge of ��� � � � � �s� we will have a
polynomial�time test for the �m � 	��coverability of G� It will follow that testing for
common knowledge of ��� � � � � �s is NP�hard�

Fix a graph G � �V�E� and an integer m satisfying 	 � m � jV j � �� Let n �
jV j�m�� and t � m��� and let ��n� t� be a system from the class under consideration�
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Figure �� Embedding a graph G in a run ��

Notice that since jV j � m � �� we have n � �t� Since each fact �i is admissible� we
can explicitly construct in polynomial time a labeled communication graph �of a point
in ��n� t�� of minimal length determining �i� Of these graphs� let G be one of minimal
length� say of length k� Let � be a run of ��n� t�� illustrated in Figure �� satisfying
the following conditions� �i� the input received in the �rst k rounds of � is the same as
in G� and no input is received after time k� �ii� all messages in the �rst k rounds are
delivered� �iii� in round k�	� the only undelivered messages are as follows� no message is
delivered from processor pv to pw in round k�	 of � i� there is an edge from v to w in G
�that is� the graph G is represented by the undelivered messages during round k � 	��
�iv� two additional processors f� and f� are silent from time k � 	 in �� and all other
messages after time k � 	 are delivered� and �v� a set S of t � 	 additional processors
do not fail in �� Since G has a vertex cover V of size m� one failure pattern consistent
with the undelivered messages in � is that pv is faulty for every v � V �accounting for
the undelivered messages during round k � 	 of �� and that both f� and f� are faulty�
Given that t � m � � processors fail in this failure pattern� there is a run � of ��n� t�
satisfying the required conditions� Since the graph G determining the input of G��� k�
can be constructed in polynomial time� setting � � k � �� the graph G��� �� can be
constructed in polynomial time as well� It remains to show that ��� �� j�

W
iCN�i i� G is

not �m� 	��coverable�

Suppose G has no vertex cover of size m � 	� and let F be the set of processors
failing in �� Since f� and f� must be faulty �each fails to the t � 	 processors in S��

F � def
� F � ff�� f�g must account for every undelivered message during round k � 	�

If there is an edge from v to w in G� then no message from pv to pw is delivered in
round k � 	� and one of pv or pw must be in F �� It follows that F � must induce a vertex
cover of G� Since G has no vertex cover of size m � 	� F � must contain at least m
processors� and F at least t � m� �� Thus� the processors in S implicitly know at time
k�� that their complement S � P �S contains t faulty processors� By Lemma �	� their
views at time k � � must be common knowledge at time k � �� These views contain a
complete description of G��� k�� and hence the identity of G��� k� is common knowledge
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at ��� ��� Recall that G was chosen to be a graph determining �i for some i� If G does
not specify a failure� then G��� k� � G� and it follows that ��� �� j� CN�i� On the other
hand� if G does specify a failure� then �i is determined by the input to the �rst k rounds
of G and the existence of a failure� Notice that the failure of f� and f� is also recorded in
the view of S at time k � �� and hence is also common knowledge at ��� ��� Thus� both
the input to the �rst k rounds of G and the existence of a failure are common knowledge
at time �� and it follows that ��� �� j� CN�i� In either case� we have ��� �� j�

W
i CN�i�

Conversely� suppose G does have a vertex cover of size m � 	� Without loss of
generality� at most t� 	 processors fail in �� First� we claim that ��� �� � ��� �� where �
is a failure�free run with the input of �� Since f� and f� fail only after time k�	 � ����
two applications of Lemma �� imply that ��� �� � ���� �� where �� di�ers from � in that f�
and f� do not fail in ��� Since at most t � � processors fail in �� and k � � � �� by
Lemma �� we have ���� �� � ��� ��� Second� we claim that for each �i there is a run 
i
not satisfying �i that di�ers from G only after time k � 	� If k � 
� then since �i is
admissible and hence not valid in the system� such a run must certainly exist� On the
other hand� if k � 
� then since G was chosen to be a labeled communication graph of
minimal length determining �j for some �j� such a run must exist in this case as well�
Now� let 
�i be a run having the input of 
i� in which no processor fails before time �� and
in which processors become silent after time � i� there is a failure in 
i� Since �i is a fact
about the input and existence of failures� and since 
i does not satisfy �i� neither does 
�i�
Let  � and  
�i be runs of F in the omissions model having the operating environments of
� and 
�i� respectively� �Notice that these operating environments actually are operating
environments of the omissions model�� Notice that no processor fails before time � in
either  � or  
�i� It follows that  G� �� �� �  G� 
�i� ��� and that  k� �� �� �  k� 
�i� ��� We denote
these values by  G and  k� respectively� Since t � m � � and m � 	� we have that t � ��
Thus�  k � � � �t � 	� � � � � � k � 	� Recall that  � and  
�i have the same input
�and no failures� through time k � 	� It follows that  V � �� �� �  V � 
�i� ��� It follows by
Lemma 	
 that � �� �� � � 
�i� �� in the omissions model� and hence that ��� �� � �
�i� �� in
the generalized omissions model as well� Since ��� �� � ��� ��� it follows that for each �i

we have ��� �� � �
�i� �� and �
�i� �� �j� �i� Therefore� for each �i we have ��� �� �j� CN�i�
and hence ��� �� �j�

W
i CN�i�

We have seen that� as a result of the uncertainty about the failure pattern� the com�
plexity of determining whether admissible facts are common knowledge is dramatically
greater in this model than in more benign models� It is conceivable� however� that this
gap in complexity is due to the fact that faulty processors may fail both to send and
to receive messages� and not merely due to the uncertainty about the failure pattern�
We can show� however� that it is precisely due to this uncertainty that we observe this
complexity gap� Consider the closely related failure model we have termed generalized

omissions with information� a model di�ering from the generalized omissions model in
that a processor not receiving a message can determine whether it or the sender is at
fault� We can show that the construction used in the omissions model can also be used
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in this model to yield a set of views  V ��� �� completely characterizing what facts are
common knowledge at the point ��� ���

Proposition ��� In generalized omissions with information� we have ��� �� j� CN� i�
���� �� j� � for all �� satisfying  V ���� �� �  V ��� ���

All of the proofs in the omissions model hold when generalized to this model� with
the exception that the construction must be started with a nonfaulty processor� �In
particular� Lemma 	� holds only when the processors p and q are processors that do not
fail to receive messages�� This exception says that faulty processors may not be able to
perform all actions performed by the nonfaulty processors� but this is no surprise since
the same is true in the receiving omissions model� Furthermore� the computation of the
sets Bi in the construction now depends not only on the undelivered messages� but also
on the additional information that receiving processors obtain regarding blame for the
undelivered messages� As in the omissions model� this construction yields a method of
deriving e�cient tests for common knowledge of certain facts� Thus� it is again possible
to design e�cient optimal protocols�

Theorem ��� Let C be an implementable practical simultaneous choice� In generalized
omissions with information� there is a polynomial�time optimal protocol for C�

This shows that it is precisely the uncertainty about the failure pattern that is responsible
for the observed gap in complexity� and not merely the fact that faulty processors may
fail both by failing to send and to receive messages�

The uncertainty about the failure pattern in the generalized omissions model adds a
new combinatorial structure to the similarity graph in this model that does not exist in
other variants of the omissions model� Since it is possible to assign failure to processors
in a number of di�erent ways consistent with a pattern of undelivered messages� it is
possible to play �pebbling games� with the failure pattern when constructing paths in
the similarity graph� showing that one point is similar to another point by alternatively
assigning responsibility for undelivered messages to the sender and to the receiver� In
fact� in addition to increasing the di�culty of determining whether a fact is common
knowledge at a point� this new combinatorial structure has interesting e�ects on when

facts become common knowledge� Recall from the discussion at the end of Section ��	
that the similarity graph in the omissions model is simply an extension of the similarity
graph in the crash failure model� two points with crash failure patterns being similar
in the crash failure model i� they are in the omissions model� As a result� our optimal
protocol FC in the omissions model is also an optimal protocol when restricted to runs
of the crash failure model� In the generalized omissions model� however� the similarity
graph is not merely an elaboration of the similarity graph in the omissions model� A
connected component in the similarity graph of the generalized omissions model may
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consists of several distinct connected components from the omissions model� As a result�
optimal protocols in the generalized omissions model are not necessarily optimal when
restricted to runs of the omissions model� as the following theorem shows is the case for
simultaneous Byzantine agreement�

Theorem ��� No optimal protocol for simultaneous Byzantine agreement in the gener�
alized omissions model is optimal when restricted to runs of the omissions model�

Proof� Let � be the failure pattern �involving at least �t processors� in which proces�
sor pi fails to send to processor pt	i in round 	 �for i � 	� � � � � t� and no other failures
occur� Notice that � is a failure pattern of both the omissions model and the generalized
omissions model� Let � be a run of a full�information protocol with the failure pattern ��
We claim that some nonvalid fact about the initial con�guration �in fact� the entire ini�
tial con�guration� must be common knowledge at ��� �� in the omissions model� and that
no nonvalid fact about the initial con�guration is common knowledge at ��� �� in the
generalized omissions model� from which it follows by Corollary � that no nonvalid fact
about the initial con�guration is common knowledge at time � in any run with failure
pattern � of a protocol in the generalized omissions model� In the �rst case� any optimal
protocol for simultaneous Byzantine agreement in the omissions model �the protocol FC�
for example� halts at time �� In the second case� Lemma � implies that no protocol for
simultaneous Byzantine agreement in the generalized omissions model can halt at time ��
Therefore� no optimal protocol for simultaneous Byzantine agreement in the generalized
omissions model is optimal when restricted to runs of the omissions model�

To see that some nonvalid fact about the initial con�guration becomes common knowl�
edge at ��� �� in the omissions model� notice that the set  V ��� �� is nonempty� The result
follows by Corollary �	�

To see that no nonvalid fact about the initial con�guration becomes common knowl�
edge at ��� �� in the generalized omissions model� it is enough to show that ��� �� � ��� ��
for all failure�free runs �� Shifting �pebbles�� notice that ��� �� � ���� �� where �� di�ers
from � only in that processor p� is nonfaulty in �� and it is processor pt	� that fails
to receive the undelivered message from p� to pt	� in round 	� Lemma �� implies that
���� �� � ����� �� where ��� di�ers from �� only in that processor pt	� does not fail to receive
the message from processor p� in round one� Repeated applications of Lemma �� now
show that ����� �� � �
� �� where 
 is the failure�free run with the input of ���� Further
applications of Lemma �� to silence one by one each processor pi� change its input� and
revive pi shows that �
� �� � ��� �� for all failure�free runs �� Therefore� ��� �� � ��� �� for
all failure�free runs �� as desired�

We remark that� for most simultaneous choice problems� the counterexample given in
the proof of Theorem �� can be used to show that no optimal protocol for this problem
in the generalized omissions model is optimal when restricted to runs of the omissions
model�
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The results of this section indicate that the generalized omissions model seems to
be a natural failure model that already displays some of the complex behavior of the
more malicious models� We believe that this model is therefore a natural candidate for
further study as an intermediate model on the way to understanding the mysteries of
fault tolerance in truly malicious failure models�

� Conclusions

This paper applies the theory of knowledge in distributed systems to the design and
analysis of fault�tolerant protocols for a large and interesting class of problems� This is
a good example of the power of applying reasoning about knowledge to obtain general�
unifying results and a high�level perspective on issues in the study of unreliable systems�
We believe that reasoning about knowledge will continue to be an e�ective tool in study�
ing the basic structure and the fundamental phenomena in a large variety of problems in
distributed computing�

Given the e�ectiveness of a knowledge�based analysis in the case of simultaneous
actions �see also �DM��� it would be interesting to know whether such an analysis can shed
similar light on the case of eventually coordinated actions� Dolev� Reischuk� and Strong
show that the problem of performing eventually coordinated actions in such synchronous
systems is quite di�erent from that of performing simultaneous actions �see �DRS��� In
addition to common knowledge� an analysis of eventually coordinated actions may be
able to make good use of the notion of eventual common knowledge ��HM�� �Mo��� We
note that it is possible to show that for eventual choice problems there do not� in general�
exist protocols that are optimal in all runs� For example� one can give two protocols for
�eventual� Byzantine agreement with the property that for every operating environment
one of these protocols will reach Byzantine agreement �i�e�� all processors will decide on a
value� by time � at the latest� However� if t � 	� it is well known that no single protocol
can guarantee that agreement will be reached by time � in all runs� What is the best
notion of optimality that can be achieved in eventual coordination#

We provide a method of deriving an optimal protocol for any given implementable

speci�cation of a simultaneous choice problem� However� in this work� we have completely
sidestepped the interesting question of characterizing the problems that are and are not
implementable in di�erent failure models� We believe that a general analysis of the
implementability of problems involving coordinated actions in di�erent failure models
will expose many of the important operational di�erences between the models� As an
example� our speci�cation of the distributed �ring squad problem in the introduction
is implementable in the variants of the omissions model� but is not implementable in
more malevolent models� in which a faulty processor can falsely claim to have received
a �start� message and otherwise seem to behave correctly �see �BL� and �CDDS� for
de�nitions of versions of the �ring squad problem that are implementable in the more

��



malicious models��

In the generalized omissions model� we have shown how to derive optimal protocols
for nontrivial simultaneous choice problems� requiring processors to perform polynomial�
space computations between consecutive rounds� We have also shown an NP�hard lower
bound for any communication�e�cient protocol for such a problem that is optimal in all
runs� Determining the precise complexity of this task is a nontrivial open problem� due
to the interesting combinatorial structure underlying the generalized omissions model�
It would also be interesting to extend our study to more malicious failure models� such
as the Byzantine and the authenticated Byzantine models �see �F��� It is not immediately
clear whether the notion of a failure pattern can be de�ned in these models in a protocol�
independent fashion� Thus� it is not clear that the notion of optimality in all runs is well
de�ned in such models� If such de�nitions are possible� we believe that the NP�hardness
result from the generalized omissions model should extend to these models� �Our proof
does show that testing for common knowledge in runs of the full�information protocol F in
both models is NP�hard�� Capturing the precise combinatorial structure of the similarity
graph in these models is bound to expose many of the mysterious properties of the models�
We believe that this is an important �rst step in understanding these models�

As we have seen� there are no computationally�e�cient optimal protocols for simul�
taneous choice problems in the generalized omissions model� Since it is unreasonable
to expect processors to perform NP�hard computations between consecutive rounds of
communication� it is natural to ask what is the earliest time at which such actions can
be performed by resource bounded processors �e�g�� processors that can perform only
polynomial�time computations�� Are there always guaranteed to be optimal protocols
for such processors# How can they be derived# The analysis of this question is no longer
as closely related to the question of when facts about the run become common knowl�
edge� It seems that the information�based de�nition of knowledge that we presented in
Section �� used in many other papers as the de�nition of knowledge in a distributed
system �see �CM�� �DM�� �FI�� �HM�� and �PR��� is not appropriate for reasoning about
such questions� A major challenge motivated by this is the elaboration of the de�ni�
tion of knowledge presented in Section � to include notions of resource�bounded knowl�
edge that would provide us with appropriate tools for analyzing such questions� Such
a theory would provide notions such as polynomial�time knowledge and polynomial�time

common knowledge� which would correspond to the actions and the simultaneous ac�
tions that polynomial�time processors can perform� Note that the fact that �suboptimal�
polynomial�time protocols for the simultaneous Byzantine agreement problem exist even
in the more malicious failure models imply that� given the right notions� many relevant
facts should become polynomial�time common knowledge� Much work is left to be done�
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