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Abstract

We consider the following abstraction of competing pub-
lications. There are n players vying for the attention of
the audience. The attention of the audience is abstracted
by a single slot which holds, at any given time, the name
of the latest release. Each player needs to choose, ahead
of time, when to release its product, and the goal is to
maximize the amount of time its product is the latest re-
lease. Formally, each player i chooses a point xi ∈ [0, 1],
and its payoff is the distance from its point xi to the next
larger point, or to 1 if xi is the largest. For this game, we
give a complete characterization of the Nash equilibrium
for the two-player, continuous-action game, and, more im-
portant, we give an efficient approximation algorithm to
compute numerically the symmetric Nash equilibrium for
the n-player game. The approximation is computed via
a discrete-action version of the game. In both cases, we
show that the (symmetric) equilibrium is unique. Our al-
gorithmic approach to the n-player game is non-standard
in that it does not involve solving a system of differential
equations. We believe that our techniques can be useful
in the analysis of other timing games.

Categories and Subject Descriptors

H.3.5 [Information Storage and Retrieval]: Online
Information Services; F.2.1 [Analysis of Algorithms

and Problem Complexity]: Numerical Algorithms and
Problems
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1. Introduction

Consider the case of n entities (such as corporations,
politicians, journalists, bloggers etc.) vying for the atten-
tion of a general audience. The basic means to capture
the attention of the audience is to release a new item
(such as a product, announcement, article, or posting re-
spectively). A key question to ask in this case is when to
release? In real life, a careful strategic planning is usually
involved in timing such major releases. There are many
factors that may affect the release time, but possibly the
most important of them is the existence of other major
events: it is an accepted truism that the public has “short
memory,” which implies, in this case, that a release time
is good if it is followed by the longest possible event-free
stretch of time. This way the impact of the release is
maximized.

In this paper we analyze a simplified model of the
scenario described above from a game-theoretic perspec-
tive. Our simplifications are as follows. First, we as-
sume that the attention of the audience at any given time
is fully dedicated to the last release. This means that
the audience can be thought of as a single-value regis-
ter which holds the identity of the last release. Second,
we assume that the release times cannot be determined
after the game has started: they must be determined in
advance. This means that we assume that a player is “off-
line” with regard to the evolution of the game once it has
started. While these assumptions restrict the generality
of our study, they are reasonable abstraction of the real
world: the attention of the audience in a certain domain
is typically dominated by a very small set of recent events;
and the inability to respond immediately (which is inher-
ent to any physical process) forces at least a part of the
game to be played in an off-line fashion.

Specifically, we model the problem as the following
a non-cooperative, complete-information strategic game.



The pure strategies are real numbers in [0, 1]. Each
player i chooses a number xi ∈ [0, 1], and player i’s payoff
is the distance to the next larger point. More precisely, the
payoff is x′−xi, where x′ = min {xj | xj ≥ xi and i 6= j},
or x′ = 1 if xi is the largest number chosen by any players.

Our results. Our results are a first step in understand-
ing the strategy of publication or release timing. First,
for the two player game, we completely characterize the
(unique) Nash equilibrium with a closed-form solution.
While the analysis in this case is standard, the equilib-
rium strategy we find is somewhat counter-intuitive. Our
main result, however, is for the general n-player game. For
this model we develop an algorithm for approximating the
symmetric equilibrium strategy. While the equilibrium
for two players is characterized by ordinary differential
equations, the equilibrium for n players is characterized
by partial differential equations that are much harder to
solve. Our approach is to use a discrete version of the
game, in which a player must choose from a finite set of
points in the unit interval. We develop an efficient nu-
merical algorithm for the discretized game, and use it to
approximate the symmetric equilibrium of the continuous
game to any degree of accuracy. We remark that proving
the algorithm correct entails an interesting methodology
and some non-trivial analysis. We believe that our tech-
nique is applicable to other “timing games” (see below).

Related work. The publicity game we consider is, to
the best of our knowledge, a new variant of the fam-
ily of “timing games” (see, e.g., [2]). More specifically,
our game resembles the “War of Attrition” game, abbre-
viated henceforth “WoA.” In the two-player version of
WoA, first formalized by Maynard Smith [5], the play-
ers are engaged in a costly competition and they need to
choose a time to concede. More formally, the first player
to concede (called “leader”) gets a smaller payoff than the
other player (called “follower”). Furthermore, the payoff
to leader strictly decreases as time progresses, i.e., con-
ceding early is better than conceding late. Hendricks et
al. [3] axiomatize and analyze a general setting of com-
plete information WoA. Our game violates one crucial ax-
iom of [3]: in our game, the payoff to the leader does not
decrease with time.

WoA and other two-player continuous-time timing
games were generalized by Baye et al. to a “general lin-
ear model of contests” [1]. Implicitly, the general formula
presented in [1] covers our Lemma 3.2. Our other results
(for the two-player game, and, of course, all results for
the n-player game) are unrelated to the results of [1].

Another family of games that superficially resembles
our game is the Hotelling location games [4], but these
games either are zero-sum or they involve pricing, and
hence they are fundamentally different.

Organization. The remainder of this paper is organized
as follows. In Section 2 we formally define the game and
review some relevant facts from game theory. In Section 3
we thoroughly analyze the two-player case in the contin-
uous model. In Section 4 we consider the n-player case,
and present an algorithm to compute the equilibrium in
the discrete model. Section 4.3 present some experimental

results. Some proof are omitted from this paper for lack
of space, but are standard and available from the authors.

2. Preliminaries

Definition of the publicity game. The publicity game
is a symmetric game of n players, whose actions are (in the
continuous case) real numbers in the unit interval [0, 1].
The payoff to each player i is defined as follows. Given
the choices (x1, . . . , xn) of the players, define

L(i)
def
= {xj | xj ≥ xi and j 6= i} .

L(i) is the set of all values at least xi excluding xi. With
this definition, the payoff function ui for player i is defined
by

ui(x1, x2, . . . , xn)
def
=



min(L(i))− xi , if L(i) 6= ∅
1 − xi , otherwise

In words, ui is the distance from xi to either the next
value up, or to 1 if xi is the unique maximum. Note
that in our definition, if two players happen to choose
the same value, the payoff to both of them is 0. We call
this definition non-conserving. In a conserving variant
of the game, colliding players somehow share the interval
to their right, so that only the interval to the left of the
smallest xi is not claimed by anyone. Unless otherwise
stated, we will mostly study the non-conserving variant
as defined above, which is more convenient.

Game theory fact. We will use the following standard
property of Nash equilibria, which we state in the n-player
continuous case of our game (see, e.g., [6]).

Theorem 2.1. Let (f1, . . . , fn) be a Nash equilibrium
point, with expected payoff vi to player i at the equilibrium
point. Let πi(x) denote the expected payoff for player i
when it plays the pure strategy x and all other players
play their equilibrium mixed strategy. Then πi(x) ≤ vi

for all x ∈ [0, 1], and furthermore, there exists a set Z of
measure 0 such that πi(x) = vi for all x ∈ support(fi)\Z.

3. The two-player game

In this section, we study the continuous, two-player
game. We start with the simple observation that this
game does not admit any pure-strategy equilibrium.

Theorem 3.1. There is no equilibrium of pure strate-
gies for the game.

Proof: By contradiction. Let (x, y) be such an equilib-
rium. First we note that x 6= y, because otherwise the
payoff for the players is 0 and each player can increase its
payoff by changing its strategy.1 It follows that at least
one of the players does not play 1

2
. Assume without loss of

generality that x 6= 1

2
. Consider first the case that x < 1

2
.

Then player 2 can improve its payoff by playing x + ε for

1If the game is conserving, then there exists at least one player

who can improve its payoff.
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Figure 1: Nash equilibrium strategy for two-player game.
The pdf is on the left, and the cdf is on the right. The
cutoff point is 1− 1

e
≈ 0.632, and the game value is about

0.368.

some arbitrarily small ε > 0. It follows that there is no
equilibrium where a player plays less than 1

2
. But there

could be no equilibrium if both players play at least 1

2
:

If x > 1

2
, then the best strategy for player 2 is to play 0,

contradiction.

In the remainder of this section we analyze the mixed-
strategy Nash equilibrium for two players. It turns out
that there is only one equilibrium point, which is sym-
metric.

3.1 Mixed Strategy Equilibrium

Let us start by assuming the existence of an equi-
librium point (existence is not immediately guaranteed
because the game is infinite and the payoff functions are
not continuous, but as it will turn out, the equilibrium
does exist). So fix a Nash equilibrium point. Let (f1, f2)
be the probability density functions (pdf’s) of players 1
and 2, respectively, at the equilibrium point. The fol-
lowing lemma characterizes the density functions in the
equilibrium point on nearly all the support set. We re-
mark that this result is implicit in [1]. All proofs of this
section are rather standard and are therefore omitted.

Lemma 3.2. There exists a set Z of measure zero, such
that for all x ∈ support(f1) \ Z, f2(x) = 1

1−x
.

We note that the density function of Lemma 3.2 remains
invariant under affine transformations of the payoff func-
tions (possibly different transformations for the two play-
ers). More precisely, if for some a1 > 0 and any real b1,
the payoff function of player 1 is defined by

u1(x, y) =

8

<

:

a(y − x) + b , if y > x
a(1− x) + b , if x > y , and
0 , otherwise,

and the payoff of player 2 is defined similarly using a2 > 0
and any real b2, then the proof of Lemma 3.2 can be
extended to show that f2(x) = 1

1−x
for x ∈ support(f1) \

Z.
Next, we determine the support sets. First we note

that the supports of f1 and f2 are essentially the same.

Lemma 3.3. With the possible exception of a set of
measure zero, support(f1) = support(f2).

We now set to determine the support of f1. To
avoid dealing with pathological cases, we make a simpli-
fying assumption that the equilibrium strategies satisfy

0

tk tk−1

0 1/k 1−c/k

tctc+1 t
0

v

Figure 2: A schematic representation of the dis-
crete game.

f1(x) = 1

1−x
for all x ∈ support(f1) except for at most a

finite number of points. We consider an equilibrium point
(f1, f2) with expected payoffs v1 and v2 to players 1 and 2,
respectively.

Lemma 3.4. inf(support(f1)) = 0
and sup(support(f1)) = 1− v1.

Lemma 3.5. For all intervals [x1, x2] with 0 < x1 <
x2 < 1− v1 we have that

R x2

x1

f1(x)dx > 0.

Thus we know what the pdf looks like “almost every-
where,” and we know that it spans the interval [0, 1− v],
where v is the value of the game. In the theorem be-
low, we show that there are no “atoms” (discrete points
with positive probability) in the support of the equilib-
rium strategy. This completes the characterization of the
equilibrium strategy for the two-player game.

Theorem 3.6. Up to a set of measure zero, there is a
unique Nash equilibrium point to the two-player publicity
game defined by f1(x) = 1

1−x
for 0 ≤ x ≤ 1− 1

e
and 0 oth-

erwise. Furthermore, the expected payoff for each player
is 1

e
.

We remark that the actual equilibrium strategy, as
depicted in Fig. 1, was surprising to us. It may be par-
ticularly interesting to find some natural phenomena that
adhere to this distribution.

4. The n-player game

In this section we present our main results. We con-
sider a discrete, symmetric n-player version of our game.
The game is defined by two parameters: the number of
players n, and the resolution of the actions k. Specif-
ically, in our version, players can only choose from the
k + 1 points

˘

0, 1

k
, 2

k
, . . . , 1

¯

. We refer to the game as the
(n, k)-game. Since this is a finite symmetric game, it ad-
mits a symmetric mixed Nash equilibrium. In this section
we consider only symmetric mixed Nash equilibria.

4.1 Equilibrium properties

It is convenient to define ti = 1− i
k

for i = 0, . . . , k so

that i
k

is the distance from ti to 1, meaning that tk = 0
and t0 = 1 (see Figure 2). For any given equilibrium, we
denote by pk, pk−1, . . . , p0 the probabilities of playing the
pure strategies tk, tk−1, . . . , t0 in the equilibrium strategy,
and denote by πi the payoff to a player playing the pure
strategy ti when all other players follow the equilibrium
strategy. We start with a general property that holds also



for the continuous case, and then restrict attention to the
discrete case.

Lemma 4.1. Consider the n-player game (continuous
or discrete, conserving or not), and let v a symmetric
equilibrium value. Then v < 1/n. If the game is conserv-
ing, then we also have v > 1/(n + 1).

Proof: Let π1, π2, . . . , πn be the random variables de-
noting the payoffs to the players 1, 2, . . . , n following the
equilibrium strategy. Obviously,

Pn

i=1
πi ≤ 1, so by lin-

earity of expectation nv =
Pn

i=1
E[πi] ≤ 1 i.e., v ≤ 1/n.

To show that v 6= 1/n, note that v = 1/n only if at
least one player chooses 0 with probability 1. How-
ever, in a symmetric equilibrium this happens only if all
players choose 0 with probability 1, and this is clearly
not an equilibrium strategy (obviously for non-conserving
games, and by considering the action 1/k for conserving
games). This proves the upper bound on v for the gen-
eral case. In the case of the conserving n-player game, let
x1 . . . , xn denote the actions taken by the players, and let

x̂
def
= min {x1, . . . , xn}. Since the game is conserving, we

have that
Pn

i=1
πi = 1−x̂, since only the leftmost interval

[0, x̂] is not claimed by any player. It follows from linearity
of expectation that nv =

Pn

i=1
E[πi] = 1−E[x̂]. Suppose,

for contradiction, that v ≤ 1/(n + 1). If player n plays
the pure strategy 0 when all remaining players follow the
equilibrium strategy, then its payoff is min{x1, . . . , xn−1}
and therefore its expected payoff is

E[min{x1, . . . , xn−1}] > E[min{x1, . . . , xn}] = 1 − nv

≥ 1−
n

n + 1
=

1

n + 1
≥ v ,

contradicting the fact that v is the equilibrium value, so
v > 1/(n + 1).

Next, we calculate the expected payoff of playing the
pure strategy ti against the equilibrium strategy. We will
use the following notation extensively.

Notation 4.1. Given a symmetric strategy for the
(n, k)-game:

• pi denotes the probability of choosing ti,

• Fi,`
def
= pi + pi−1 + · · · + pi−`+1 denotes the

probability of choosing one of the ` strategies
ti, ti−1, . . . , ti−`+1 to the right of ti, and

• πi denotes the payoff to a player playing ti.

Lemma 4.2. Given a symmetric strategy for the (n, k)-

game, E[πi] = 1

k

Pi

`=1
(1 − Fi,`)

n−1.

Proof: Since the value of πi is always of the form `
k

for
some integer ` satisfying 0 ≤ ` ≤ k, the expected value of
πi is

E[πi] =
i
X

`=1

`

k
P

»

πi =
`

k

–

=
1

k

i
X

`=1

P

»

πi ≥
`

k

–

=
1

k

i
X

`=1

P [no one plays ti, . . . , ti−`+1]

=
1

k

i
X

`=1

(1− Fi,`)
n−1.

Subroutine Feasible(n, k, v) =
(1) Let c = bvkc + 1.

(2) Let pc = 1−
`

v k
c

´
1

n−1

(3) For i← c + 1, . . . , k do

(3.1) Let pi be the least positive solution to v =
Ei(pi, . . . , p0)

(3.2) Return “failure” if no positive solutions exist
or Fi > 1.

(4) Return pk, . . . , pc.

Equilibrium(n, k, ε) =
(1) Let l← 1

n
and r ← 0.

(2) While l − r > ε do

(2.1) Let m← (l + r)/2.

(2.2) If Feasible(n, k, m) succeeds then l← m else
r← m

(3) Return l.

Figure 3: Algorithm Equilibrium(n, k, ε) computes
the equilibrium value for the (n, k)-game to within ε.

Fi =
Pi

j=0
pi, and Ei(pi, . . . , p0) is defined in Eq. (1).

One nice property of the (n, k)-game is that the sup-
port for an equilibrium forms a segment at the left of the
unit interval, as in the continuous case for two players
(cf. Lemmas 3.4 and 3.5).

Lemma 4.3. For the (n, k)-game, if v is an equilib-
rium value, then tk, tk−1, . . . , tc is the equilibrium support,
where c = bvkc+ 1.

4.2 Equilibrium computation

In this section we prove the following two theorems.

Theorem 4.4. There is a unique symmetric equilib-
rium to the (n, k)-game.

Theorem 4.5. Algorithm Equilibrium(n, k, ε) of Fig-
ure 3 computes the equilibrium value of the (n, k)-game to
within ε.

We remark that, in fact, we compute the equilibrium
strategy and not only the equilibrium value.

Overview. The high-level idea in the algorithm is as
follows. We guess the game value v, which implies the
support set of the equilibrium strategy. Then we start
computing the probabilities associated with each point in
the support set, starting with the rightmost point and ad-
vancing to the left. This can be done since the payoff to
a player who plays x depends only on the actions taken
to its right, i.e., actions with value larger than x. Since
by induction the probability of these actions have already
been computed, we can proceed by solving the polyno-
mials suggested by Lemma 4.2. To make this idea work,
we need to analyze the case of wrongly guessing the game



value. It requires some non-trivial analysis to show that
if our guess of the game value is too large, then the sum
of the probabilities over the support set is smaller than 1,
and if the guess is too small, then the algorithm will fail
at some point (indicated by the nonexistence of a positive
real probability that solves the polynomial for that point).
Thus, we can conduct binary search on the game value,
approximating it to any desired degree. The uniqueness of
the symmetric equilibrium is a by-product of our analysis
of the algorithm.

We start by applying Lemma 4.2 as follows. Sup-
pose v is an equilibrium value for the unique (n, k)-
game, and suppose tk, . . . , tc is the equilibrium support
with equilibrium distribution pk, . . . , pc. We know from
Lemma 4.3 that c = bvkc+1. Since by Theorem 2.1 E[πi]
is equal to the equilibrium value, we have v = E[πi] =

1

k

i
X

`=1

(1 − Fi,`)
n−1 for each i = c, . . . , k. Equivalently, if

we define

Ei(pi, . . . , p0)
def
=

1

k

i
X

`=1

(1− Fi,`)
n−1 (1)

then we have v = Ei(pi, . . . , p0) for each i = c, . . . , k. Since
pc−1, . . . , p0 are all 0, Ec is a polynomial in pc, Ec+1 is a
polynomial in pc and pc+1, and so on. This suggests that
we can iteratively solve these equations for pc, then pc+1,
and so on. At each step, having computed the values
of pc, . . . , pi−1, we just have to solve a polynomial of de-
gree n−1 in the single variable pi, which can be efficiently
solved to any desired accuracy. Let us state the simplest
case for later use.

Lemma 4.6. pc = 1−
`

v · k
c

´
1

n−1

Proof: Solve v = Ec(pc, 0, . . . , 0) = 1

k

Pc

`=1
(1 −

Fc,`)
n−1 = c

k
(1− pc)

n−1 for pc.

The main problem we face now is to show that we can
find a set of values pi that will indeed be probabilities.
To this end, we define a feasible solution for a potential

equilibrium value v as follows. Let Fi
def
= pi + · · · + p0,

namely Fi is the probability of choosing at least 1− i/k.

Definition 4.2. We say that pk, pk−1, . . . , pc is a fea-

sible solution for v if c
def
= bvkc + 1 and the following

conditions hold for each i = c, . . . , k:
C1(i): v = Ei(pi, . . . , p0).

C2(i): pi ≥ 0.

C3(i): Fi ≤ 1.

It is obvious from this discussion that an equilibrium value
has a feasible solution:

Lemma 4.7. If there is an equilibrium with value v and
with support tk, . . . , tc and probabilities pk, . . . , pc (where
pc−1 = pc−2 = . . . = p0 = 0), then pk, . . . , pc is a feasible
solution for v and Fk = 1.

It is not so obvious that the feasible solution for a given
value v is unique. To do that, we first rewrite the Ei

polynomials and change their variables, as defined in the
following lemma.

Lemma 4.8. Ei(pi, . . . , p0) = Pi(1− Fi) where

Pi(x) = ai,0 + ai,1x + · · ·+ ai,n−1x
n−1 ,

and

ai,j =
1

k

 

n− 1

j

!

i
X

`=1

(Fi−`)
n−1−j .

Using the Pi representation, and applying Descartes’s
Rule of Signs, we can prove that solving for pi (after solv-
ing for p0, . . . , pi−1) results in at most one solution that
makes sense, as formalized in the following key lemma.

Lemma 4.9. Suppose v = Ei−1(pi−1, . . . , p0) and
Fi−1 ≤ 1 for some nonnegative pi−1, . . . , p0, and sup-
pose i − 1 > vk. If v = Ei(pi, pi−1, . . . , p0) and Fi ≤ 1,
then pi is the least positive solution to the equation v =
Ei(pi, pi−1, . . . , p0).

Corollary 4.10. If there is a feasible solution for v,
then it is unique.

Proof: The definition of a feasible solution says that
pc−1, . . . , p0 must be 0, where c = bvkc+1. Since c > vk,
Lemma 4.6 says that pc is uniquely determined and posi-
tive, and, by induction on i > c, Lemma 4.9 shows that pi

is uniquely determined since i− 1 ≥ c > vk.

We now prove the central property of the algorithm: if
there exists a feasible solution for v, there exist solutions
for all v′ ≥ v. The main results of this section follow
directly from Lemma 4.11 below.

Lemma 4.11. If there is a feasible solution pk, . . . , pc

for v, then there is a feasible solution p′

k, . . . , p′

c′ for each
v′ > v. In this case, F ′

k < Fk where F ′

i = p′

i + · · · + p′

c′

and Fi = pi + · · · + pc.

Proof: We show that there is a feasible solution for each
v′ > v satisfying c

k
≥ v′ > c−1

k
. The same proof shows

that if there is a feasible solution for c′

k
, then there is a

feasible solution for each v′ satisfying c′+1

k
≥ v′ ≥ c′

k
.

Thus, by induction on c′, there is a feasible solution for
each v′ > v.

The values pk, . . . , pc and v satisfy C1(i), C2(i),
and C3(i) for all i ≥ c. It is enough to construct p′

k, . . . , p′

c

so that the values p′

k, . . . , p′

c and v′ satisfy C1(i), C2(i),
and C3(i) for all i ≥ c. To see why, consider two cases.
If c

k
> v′, then since c

k
> v′ > v ≥ c−1

k
we have

c′ = bv′kc + 1 = bvkc + 1 = c, and p′

k, . . . , p′

c is a fea-
sible solution for v′. If c

k
= v′, then c′ = c + 1, but

Lemma 4.6 says that p′

c = 1−
`

v′ · k
c

´
1

n−1 = 0. Since the
values p′

k, . . . , p′

c and v′ satisfy C1(i), C2(i), and C3(i) for
i ≥ c, they certainly do for i ≥ c + 1, and p′

k, . . . , p′

c+1 is
a feasible solution for v′.

We proceed by induction on i ≥ c to construct values
p′

i, . . . , p
′

0 satisfying the properties (1) v′ = Ej(p
′

j , . . . , p
′

0),
(2) p′

j ≥ 0, and (3) F ′

j < Fj ≤ 1 for all c ≤ j ≤ i.
Suppose i = c. Lemma 4.6 and v′ > v imply that

p′

c = 1 −

„

v′k

c

« 1

n−1

< 1 −

„

vk

c

« 1

n−1

= pc



and properties (1–3) clearly hold. In particular, p′

c ≥ 0
since c

k
≥ v′, and F ′

c = p′

c < pc = Fc ≤ 1.
Suppose i > c and we have constructed p′

i−1, . . . , p
′

0

satisfying properties (1–3) for c ≤ j ≤ i − 1. Lemma 4.8
says that 1 − Fi is a nonnegative root of the polynomial
Pi(x)− v where

Pi(x) = ai,0 + ai,1x + · · ·+ ai,n−1x
n−1 ,

and

ai,j =
1

k
·

 

n − 1

j

!

·
i
X

`=1

(Fi−`)
n−1−j .

We show that there is a positive root of the polynomial
P ′

i(x)− v′ where

P ′

i(x) = a′

i,0 + a′

i,1x + · · ·+ a′

i,n−1x
n−1 ,

and

a′

i,j =
1

k
·

 

n − 1

j

!

·
i
X

`=1

(F ′

i−`)
n−1−j ,

and use this to construct the desired p′

i. These polyno-
mials have several useful properties. First, a′

i,j < ai,j

since 0 ≤ F ′

i−` < Fi−` ≤ 1 for all ` ≥ 1 by the induction
hypothesis. Second, the ai,j are positive and the a′

i,j are
nonnegative for the same reason. Third, a′

i,n−1 is actually
positive, since

a′

i,n−1 =
1

k
·

 

n− 1

n− 1

!

·
i
X

`=1

(F ′

i−`)
0 =

i

k
> 0

because i > c ≥ 0.
Descartes’s Rule of Signs says that the number of pos-

itive real roots (counting multiplicities) of a polynomial
is equal to the number of alternations in the signs of its
nonzero coefficients minus an even number. We know that
1−Fi is a nonnegative root of Pi(x)− v. If 1−Fi is zero,
then the constant term ai,0− v of Pi(x)− v must be zero.
If 1 − Fi is positive, then the constant term ai,0 − v of
Pi(x)−v must be negative, for if not then all nonzero co-
efficients of Pi(x)− v are positive and the number of sign
alternations is zero, contradicting the fact that Pi(x)− v
has a positive root. Thus, in either case, ai,0−v ≤ 0, and
a′

i,0 < ai,0 implies a′

i,0 − v < ai,0 − v = 0, so the constant
term of P ′

i(x) − v must be negative. The nonzero coeffi-
cients of P ′

i(x)−v therefore consist of positive coefficients
followed by a negative constant term, so the number of
sign alternations is one, and there is a positive root R′

i of
P ′

i(x)− v. Let p′

i = (1 − R′

i) − F ′

i−1 so that 1 − F ′

i = R′

i

is this root.
(1) We have v′ = P ′

i(1 − F ′

i ) = Ei(p
′

i, . . . , p
′

0) by
Lemma 4.8, since 1 − F ′

i is a root of P ′

i(x)− v′.
(2) We have p′

i > 0 by Lemma 4.9.
(3) Suppose F ′

i ≥ Fi. Since 1 − F ′

i is a positive root
of P ′

i(x) − v, we have 0 ≤ F ′

i , Fi ≤ 1, and hence 0 ≤
1 − F ′

i ≤ 1 − Fi ≤ 1. Notice that P ′

i(x) and Pi(x) are
nondecreasing between 0 and 1 since the coefficients a′

i,j

and ai,j are nonnegative. Notice also that P ′

i(x) ≤ Pi(x)
between 0 and 1 since the coefficients satisfy a′

i,j ≤ ai,j . It
follows that v′ = P ′

i(1−F ′

i ) ≤ Pi(1−F ′

i ) ≤ Pi(1−Fi) = v,
contradicting v′ > v, and we are done.

Lemma 4.11 immediately implies Theorem 4.4:

Proof of Theorem 4.4: If v′ > v are distinct equilibria,
then 1 = F ′

k < Fk = 1, contradiction.

Lemma 4.11 also implies says that we can use bi-
nary search to find the equilibrium value. The algorithm
Equilibrium(n, k, ε) uses binary search to compute the
equilibrium value of the (n, k)-game to within ε. It re-
peatedly calls Feasible(n, k, v) to test whether there is
a feasible solution for v. To prove correctness, we need
only check that Feasible(n, k, v) computes the feasible
solution for v.

Lemma 4.12. Feasible(n, k, v) returns pk, . . . , pc iff
pk, . . . , pc is a feasible solution for v.

Proof: If the algorithm returns pk, . . . , pc, then v =
Ei(pi, . . . , p0) and pi ≥ 0 and Fi ≤ 1 for each i = c, . . . , k,
since the algorithm would have returned “failure” if any of
these conditions were false, so pk, . . . , pc is a feasible solu-
tion for v. Conversely, suppose pk, . . . , pc is a feasible solu-
tion for v. On each iteration i of the loop on line 3, line 3a
computes the least positive solution to v = Ei(pi, . . . , p0),
and Lemma 4.9 says this is precisely pi; and since pi is part
of a feasible solution and thus passes the test on line 3b,
the algorithm returns the feasible solution pk, . . . , pc.

We can now prove the correctness of the algorithm.

Proof of Theorem 4.5: Let v be the equilibrium value.
We will show that the algorithm preserves the invariant
that (1) l ≤ v < r, (2) there is a feasible solution for l, and
(3) there is no feasible solution for r. Since the algorithm
terminates when l − r ≤ ε, Part (1) of the invariant will
imply the result. The base case for Part (1) follows from
Lemma 4.1 and Line 1 of Algorithm Equilibrium(n, k, ε).
Part (2) follows from Lemma 4.11. Part (3) follows from
the fact that if there were a feasible solution for r > v then
there were a feasible solution for v with Fk < 1, contradic-
tion to Lemma 4.7. For the induction step, suppose first
that Feasible(n, k, m) succeeds. Then by Lemma 4.12
there exists a feasible solution for 1−m/k and hence, by
Lemma 4.11, v ≥ 1 −m/k, proving Part (1). Part (2) in
this case follows from Lemma 4.12, and Part (3) follows
from the induction hypothesis. If Feasible(n, k, m) fails,
then v < 1−m/k, since otherwise, there exists a feasible
solution to v with Fk < 1, contradiction to Lemma 4.7.
This proves Part (1). Part (2) follows from the induction
hypothesis and Part (3) from Lemma 4.12. In any case,
the assignment made in Line 2b of the algorithm guaran-
tees that the invariant holds, and we are done.

4.3 Experimental results

Figure 4 gives the equilibrium strategies and approx-
imate game values for 3, 4, and 5-player games with
k ≈ 100 and ε ≈ 0.01 as computed by an implementa-
tion of our algorithm in Mathematica. Notice that the
game value decreases as the number of players increases,
as predicted by Lemma 4.1. Notice also how the probabil-
ities initially decrease and then increase for the 3-player
game, in contrast to the two-player game where the prob-
abilities increase monotonically up to the cutoff point (re-
call Figure 1). Most interesting, however, are the minute
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Figure 4: Equilibrium strategies and game values for the 3-, 4-, and 5-player games. On the left is the
probability function, and on the right we zoom in dramatically (notice the y-axis scale) to show minute
probability fluctuations for strategies near zero. Game values are approximations correct to within ε ≈ .01.



oscillations in the probabilities for strategies near zero.
On the right side of Figure 4 we have zoomed in and in-
creased the resolution of the y-axis scale by a factor of 100
to show the oscillations. Some of this oscillation may be
due to numerical errors in our Mathematica implemen-
tation, but moving from 2- to 3- to 4-player games we
find 0, 1, and 2 extreme points in the probability func-
tions. While we have no mathematical explanation for
this phenomenon at this point, we speculate that there
is a subtle interaction among the players’ strategies that
would be interesting to explore in the future.

5. Conclusion

In this paper we have made a first step toward under-
standing the effect of delayed actions on the outcome of
timely games. These games arise naturally in many sit-
uations such as recommendation systems and other eco-
nomic systems. To do that, we have defined and analyzed
a simple game we called the publicity game. To the best
of our knowledge, this is the first time this game is explic-
itly addressed. We have a fairly good understanding of the
game for two players, and a general method to solve the
game for n players. For example, consider the following
extension: At every point in time, all previous actions are
ordered from newest to oldest, and the payoff is the inte-
gral of a decreasing function of the ranking (the function
for the basic game is 1 for the last player and 0 to ev-
eryone else). Our algorithm can be extended to this case.
Other interesting directions include the following.
• Analyzing the numerical stability of our algorithm.

• Analyzing an on-line problem with delay consider-
ations.

• Understanding the repeated game version.

• Analyzing the case where each player can write k
times in a single time unit, for some k > 1.

We note that our model is “off-line” in the sense that
players decide on their moves ahead of time. This prop-
erty means that our model is appropriate for the case
where a release is a major event whose time must be
planned in advance. We also note that even in an on-
line setting, where players may react to the evolving state
of the game, learning about other releases and possibly
responding with a release are never instantaneous (just
like any other physical process).

Acknowledgement: We thank Ariel Rubinstein for very
helpful comments.
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