
Wait�Free Computation in Message�Passing Systems�

Preliminary Report

Maurice P� Herlihy Mark R� Tuttle

DEC Cambridge Research Lab

One Kendall Square

Cambridge� MA �����

Abstract� We explore the time complexity of wait�
free implementations of concurrent objects in syn�
chronous� message�passing systems� Our technique
is to reduce the �di�cult� problem of analyzing all
possible wait�free implementations for a particular
object to the �more tractable� problem of analyz�
ing a related decision problem� The decision prob�
lem we consider is strong renaming� in which an arbi�
trary subset of m out of n processors choose unique
names in the range � � � �m� where m is not known
in advance� We prove tight logm bounds on the
number of rounds of communication needed to solve
this renaming problem� As a result� we derive corre�
sponding lower bounds for wait�free implementations
of a variety of objects such as stacks� queues� prior�
ity queues� and fetch	add registers� as well as for
decision problems such as ��assignment and order�
preserving renaming� Conversely� we show how a par�
ticular strong renaming algorithm can be transformed
into an O�m

�

�
��� implementation of an object called

an increment register� a substantial improvement over
conventional O�n� techniques� Our results suggest
the existence of a nontrivial complexity hierarchy for
wait�free implementations of concurrent objects�

� Introduction

A concurrent object is a data structure shared by con�
current processors� An implementation of a concur�
rent object is wait�free if every nonfaulty processor
can complete any operation in a
nite number of steps
despite the failure of n�� other processors� where n is

This paper appeared in Proceedings of the �th Annual ACM

Symposium on Principles of Distributed Computing� pages ����

���� ACM� August 	

��

the number of processors in the system� In this paper�
we prove a new lower bound for the time complexity
of wait�free implementations of a class of concurrent
objects in message�passing systems� We prove our
lower bound in a synchronous model where proces�
sors may crash at any time� As a result� our lower
bounds apply to many other message�passing mod�
els� including asynchronous and semi�synchronous� as
well as models that permit lost messages� Byzantine
failures� etc�
Upper bounds for this model are well known� For

example� the state machine methodology of Lamport
���� �� and Schneider ���� is a general�purpose tech�
nique that can be adapted to a variety of failure mod�
els� The object is implemented as a replicated col�
lection of uninterpreted deterministic automata� and
atomic broadcast is used to ensure that each automa�
ton executes the same operations in the same order�
In the crash failure model� atomic broadcast requires
time ��n�� yielding an immediate upper bound for any
wait�free concurrent object� It is also known that con�
sensus ���� can be used to construct wait�free imple�
mentations of a concurrent objects in shared�memory
models� and it is not di�cult to show the same in
message�passing models� Consensus� like atomic broad�
cast� is ��n� in this model ����� Given these bounds� it
is natural to ask whether one can achieve better per�
formance by designing �customized� algorithms that
exploit the semantics of the object� in the same way
that type�speci
c replication techniques have been
developed for the atomic transaction model �����
Although lower bounds have been extensively stud�

ied for decision problems� ��� �� �� �� � ��� ��� ���
concurrent objects have received less attention� Our
technique is to reduce the �di�cult� problem of an�
alyzing all possible wait�free implementations for a
particular object to the �more tractable� problem of
analyzing a related decision problem� Any lower bound
for the decision problem translates immediately to a
lower bound for the concurrent object� The lower
bounds presented here are derived by analyzing the

Page �

complexity of the strong renaming problem� informally
de
ned as follows� Given a set of n processors with
ids taken from an ordered set� design a protocol that
allows an arbitrary subset of � � m � n processors to
choose unique names in the range � � � �m� where m is
not known in advance� This problem is called strong
renaming because the range of names chosen must
equal the number of participants� which is known to
be impossible in asynchronous systems ��� ��� Re�
naming algorithms are interesting in their own right
and have been extensively studied in asynchronous
systems ��� ���
In this paper� we prove a tight logm bound on

the number of rounds of communication needed to
solve the strong renaming problem� This lower bound
yields corresponding lower bounds for a variety of in�
teresting data types� For example� it is a simple mat�
ter to solve strong renaming given� say� a wait�free

rst�in�
rst�out �FIFO� queue� One simply initial�
izes the queue to hold the integers � � � �n� and each of
the m processors dequeues its name� The ��logm�
complexity of renaming translates directly into an
��logm� lower bound on any wait�free implementa�
tion of the dequeue operation for FIFO queues� Minor
variations of this argument yield lower bounds for op�
erations of many other data types� including stacks�
priority queues� fetch�add registers ����� and oth�
ers� This argument also yields lower bounds for deci�
sion problems that solve strong renaming� including
��assignment ��� and order�preserving renaming ����
Elsewhere ����� a similar kind of reduction �to con�
sensus ��� ���� was used to derive impossibility results
for wait�free concurrent objects in the asynchronous
shared�memory model� Our results here show that
reduction to a decision problem can be adapted to
yield complexity as well as impossibility results�
How tight are these lower bounds for concurrent

objects� In general� we don�t know� The inherent
complexity of a concurrent object is closely related to
the algebraic structure of its operations� For example�
consider a FIFO queue extended with a peek opera�
tion that returns but does not remove the oldest item�
It is easy to show that the extended queue can solves
consensus� and hence its operations require time ��n�
in the crash failure model� By contrast� the queue
without the peek operation cannot solve consensus
among three or more processors ����� and indeed� the
inherent complexity of a FIFO queue in this model
remains an open question� Nevertheless� there do ex�
ist simple concurrent objects for which type�speci
c
algorithms yield better than O�n� complexity� In this
paper� we give a wait�free implementation of a regis�
ter that provides an atomic increment operation in
which each increment requires time O�c

�

�
���� where

c is the number of concurrent operations starting in

the same round� Interestingly� this implementation is
just a simple transformation of a relatively ine�cient
O�m

�

�
��� strong renaming protocol�

The rest of this paper is organized as follows� We
de
ne our model of computation in Section �� We
de
ne the strong renaming problem in Section �� and
in Section � we show how to reduce proving lower
bounds on the complexity of several concurrent ob�
jects to proving lower bounds for the strong renam�
ing problem� In Section �� we prove our logm lower
bound for strong renaming� and in Section � we show
that this bound is actually tight with an e�cient
strong renaming algorithm� In Section � we show
how to transform a particular renaming algorithm
into a wait�free implementation of an increment reg�
ister� Finally� we close with a discussion of some open
problems in Section ��

� Model

We begin with a description of our model of computa�
tion� Loosely speaking� we consider synchronous sys�
tems of n unreliable processors p�� � � � � pn who share
a global clock that starts at time � and advances in
increments of one� We assume that any processor can
send a message to any other processor� Computation
proceeds via a sequence of rounds� Round k lasts from
time k�� to k� and consists of three phases� Each pro�
cessor
rst receives the messages sent to it by other
processors in the preceding round� It then performs
some local computation� based on its current local
state and the messages just received� to determine its
next local state and the messages it wishes to send
to other processors� Finally� it sends these messages
to the other processors� Communication is reliable�
in that a message sent is guaranteed to be delivered�
but processors may crash at any time� perhaps after
having set only a subset of the messages it wanted to
send during that round�
More formally� a global state of the system is a

tuple �s�� � � � � sn� e�� where si is the local state of pro�
cessor pi and e is the state of the environment� A
processor�s local state contains its id� the time on
the global clock� and the entire history of messages
received from other processors so far� The environ�
ment contains the set P of processors in the system�
and any other information of relevance to the system
that cannot be deduced from processors� local states�
An execution is a sequence g�g� � � � gk of global states
where g� is an initial state� and gi is the global state
of the system at time i�
We assume that every processor is following a de�

terministic protocol that determines what actions it
performs� For our purposes� a protocol is simply a

Page �

function from a processor�s local state �including its
id and the messages it received in the last round� to its
next local state and the set of messages it is to send to
processors in the next round� Processors always fol�
low their protocol� except that some processors may
crash �or fail� in the middle of a round and do not
participate in the protocol from that point on� We as�
sume that the state of the environment contains the
set F of processors who have failed in the execution
thus far� and a tuple �p� k� S� for every p � F indicat�
ing p failed in round k after sending to processors in
S� This means that p sends every message required
by the protocol in rounds � through k��� sends every
message it is required to send to processors in S in
round k and fails to send any message it is required to
send to processors in P � S in this round� and sends
no messages in any later round� A processor is con�
sidered faulty in an execution if it fails in some round
of that execution� and nonfaulty otherwise� We say
that a processor survives its kth round if it has not
failed in its
rst k rounds�
Our primary concern in this paper is the wait�free

implementation of concurrent objects� Informally� an
object is simply a data structure� possibly replicated
at multiple processors� �We note in passing that in
the message�passing model� where processors do not
share memory� any wait�free implementation of an ob�
ject must be replicated at every processor�� It has a
type� which de
nes the set of possible values the ob�
ject can assume� and a set of operations that provide
the only means to access or modify the object� An
operation is split into an invocation sent by a proces�
sor to an object in one round� and a response sent
from the object to the processor in a later round�
Each object has a sequential speci�cation that de�

nes how it behaves when a sequence of operations
are executed one at a time by a single processor� that
is� for each operation in the sequence� the proces�
sor waits for that operation�s response before issu�
ing the next operation�s invocation� If the object is
shared by concurrent processors� however� it is neces�
sary to give a meaning to executions in which several
processors have issued invocations for several oper�
ations before receiving the corresponding responses�
Loosely speaking� an object is linearizable ���� if each
operation appears to take e�ect instantaneously at
some point between the operation�s invocation and
response messages� This means that operations ap�
pear to have happened in some sequential order� one
that preserves the order of nonconcurrent operations�
if one operation ends before another begins� then the

rst appears to have happened before the second� In
this sense� linearizability is a correctness condition
for concurrent objects that permits programmers to
reason about concurrent objects as if they were se�

quential�
More precisely� an execution e is linearizable if the

sequential speci
cation is satis
ed by some sequential
execution obtained by reordering events in e as fol�
lows� for every operation � appearing e� �i� choose
some time t� between ��s invocation and response�
and �ii� reorder e so that the invocation�response pair
for � appears before the invocation�response pair for
� i� t� � t�� Notice that linearizability preserves the
order of nonoverlapping operations� if ��s response
appears in an execution before ��s invocation� then �
is ordered before �� An object is linearizable if each of
its executions is linearizable� Although linearizability
was originally proposed for asynchronous systems� it
applies equally well to synchronous systems� It is re�
lated to �but not identical to� correctness criteria such
as sequential consistency ���� and strict serializabil�
ity ����� In this paper� we consider only linearizable�
wait�free implementations of concurrent objects�
A processor crash can prevent an operation from

ever returning a response� In this case� the lineariz�
ability condition permits the operation to be ordered
at any point after the invocation� or to have no e�ect�
The response e�ectively occurs at time in
nity� and
the operation may appear to occur at any point in the
resulting interval� including in
nity� In any event� the
operation is atomic� it either appears to everyone to
have taken e�ect at a particular point� or it appears
to everyone never to have happened at all�

� Strong Renaming

The strong renaming problem is de
ned as follows�
Each processor has a unique id taken from a totally�
ordered set of ids� Each processor also has a read�
only input register and a write�once output regis�
ter as part of its local state� At time �� each pro�
cessor�s input register is initialized with either � or
� �meaning �don�t participate� or �participate�� re�
spectively�� and its output register is empty� The
initial state of a processor at time � consists simply
of its id and the contents of its input and output
registers� A protocol is a solution for the renaming
problem tolerating n � � failures if the output regis�
ters of the nonfaulty participating processors contain
distinct values from f�� � � � �mg at the end of every ex�
ecution in which at most n� � processors fail� where
m � n is the number of participating processors�

� Wait�free Lower Bounds

Our technique for proving lower bounds on the com�
plexity of wait�free implementations of concurrent ob�

Page �

jects is to reduce the analysis of concurrent objects to
the analysis of the strong renaming decision problem�
For example� an ordered set S is a data structure

whose value is some subset of a totally ordered set T �
with an insert�a� operation that adds a � T to S and
a remove operation that removes minimum element
a � S from S and returns a� Many interesting con�
current objects such as stacks� queues� and heaps are
special cases of ordered sets� Because we can solve
the strong renaming problem given any wait�free im�
plementation of an ordered set� any lower bound on
the renaming problem implies a lower bound on the
remove operation of an ordered set�

Proposition �� If ��f�m�� rounds of communica�
tion are required by any protocol for strong renaming�
where m is the number of participating processors�
then ��f�c�� rounds of communication are required
by any wait�free implementation of the ordered set�s
remove operation� where c is the number of concur�
rent invocations of the remove operation�

Proof� Let S be a wait�free implementation of an
ordered set� and let g an initial global state for S
in a system with n processors p�� � � � � pn� Without
loss of generality� suppose the value of S is a subset
of the integers� Consider the sequential execution of
the operations insert���� � � � � insert�n� starting in the
global state g� This execution brings the system to a
global state h in which the ordered set contains the
values � through n� Any concurrent execution of m
remove operations is guaranteed to return the values
� through m in some order� Thus� a simple strong re�
naming algorithm takes h as its initial state and has
each participating processor perform a remove oper�
ation and output the integer returned as its name�
If the remove operation can be implemented in f�c�
time� where c is the number of concurrent processors�
then the strong renaming problem can be solved in
f�m� time� where m is the number of participating
processors� Consequently� any ��f�m�� lower bound
for strong renaming implies an ��f�c�� lower bound
for an ordered set�s remove operation�

Since an ordered set�s remove operation is just
a special case of a stack�s pop� a queue�s dequeue�
and a heap�s min� a lower bound for strong renaming
implies a lower bound for each of these operations as
well�
As another example� consider the increment reg�

ister� An increment register is just a special case of
a fetch	add register� The value of an increment reg�
ister is just an integer� initially �� The increment
register provides an increment operation that atomi�
cally increments the value of the register and returns
this new value� Again� a lower bound for renaming

implies a lower bound for an increment register�s in�

crement operation�

Proposition �� If ��f�m�� rounds of communica�
tion are required by any protocol for strong renaming�
where m is the number of participating processors�
then ��f�c�� rounds of communication are required
by any wait�free implementation of the increment reg�
ister�s increment operation� where c is the number of
concurrent invocations of the increment operation�

Proof� Let R be a wait�free implementation of an in�
crement register� and let g be an initial global states
for R in a system with n processors p�� � � � � pn� Re�
call that R�s initial value is � in g� Any concurrent
execution of m increment operations is guaranteed
to return the values � through m� Thus� a simple
strong renaming algorithm takes g as its initial state
and has each participating processor perform an in�

crement operation and output the returned value as
its name�

These results show that we can prove lower bounds
on the complexity of wait�free implementations of
several interesting concurrent objects by proving lower
bounds on the strong renaming decision problem� We
note that similar results hold in many other mod�
els� such as asynchronous systems� and hence that
lower bounds for strong renaming in these models also
imply lower bounds for wait�free implementations of
concurrent objects� These reductions can also be used
to prove impossibility results� For example� since it
follows from the results of ��� �� that the strong re�
naming problem cannot be solved in asynchronous
systems� we see that there is no wait�free implemen�
tation of an ordered set in such systems� Such results
also follow from ���� where reductions to consensus
are also used to prove several impossibility results for
wait�free implementations� We note that similar re�
duction between renaming and other decision prob�
lems such as ��assignment and order�preserving re�
naming are also possible� meaning that lower bounds
on strong renaming imply lower bounds on these de�
cision problems as well�

� Renaming Lower Bound

In this section� we prove a lower bound of ��logm� on
the number of rounds of communication required to
solve the strong renaming problem for a reasonably
general class of protocols� We restrict our attention to
comparison�based protocols in which we assume the
existence of a totally ordered set of processor ids and
we assume that the only operations a processor can
perform on processor ids is to test for equality and
order� that is� given two ids p and q� a processor can

Page �

test for p � q� p � q� and p � q� but cannot exam�
ine the structure of the ids in any more detail� The
restriction to comparison�based protocols is a reason�
able one to make in systems where there are many
more processor ids than there are processors� In such
systems� there may be no e�ective way to enumerate
all possible processor ids� and no way to tell whether
there exists a processor with an id between two other
ids� Furthermore� since there are so many possible
ids� it is not feasible to use processor ids as indices
into data structures as is frequently done in wait�
free implementations of objects like atomic registers
�cf� ������
In order to make this restriction precise� it is con�

venient to assume that all protocols are of a particu�
lar form� Following Frederickson and Lynch ����� we
assume without loss of generality that each proces�
sor�s local state consists of its id� its initial state� and
the entire history of messages it has received� and we
assume that processors simply broadcast their entire
local state in every round� We represent a processor�s
local state with a LISP S�expression� The initial state
for a processor p in initial state s is written �p� s��
and later states are written �p m� � � � mk�� where
m�� � � � �mk is the sequence of messages received in
the previous round �themselves S�expressions repre�
senting the states of the sending processors�� sorted
by processor identi
ers� By convention� p also sends
to itself in each round� We note that the reason we
can assume processor states have such a special rep�
resentation is that from such a description of a pro�
cessor�s state we can reconstruct the value of every
variable v appearing the the actual state� It is conve�
nient to associate with every such variable v a variable
function fv mapping S�expressions to the value of v
in the corresponding processor state represented by
the S�expression�
Loosely speaking� two processor states s and s� are

order equivalent if �i� they are structurally equivalent
S�expressions� �ii� initial states from corresponding
positions in s and s� are identical� and �ii� if two ids
p and q taken from s satisfy p � q� then the two
ids p� and q� taken from corresponding positions of
s� satisfy p� � q�� Intuitively� two order equivalent
states must look identical to any protocol that can
only compare processor ids for order� More formally�
a one�to�one function 	 from a processor id p to a
processor id 	�p� is order�preserving if p � q implies
	�p� � 	�q�� Any such 	 can be extended to processor
states �S�expressions� by de
ning 	�p� s� � �	�p�� s�
and 	�p m� � � � mk� � �	�p� 	�m�� � � � 	�mk���
Two processor states are order equivalent if there ex�
ists an order�preserving function 	 mapping one to
the other� and order inequivalent otherwise� A proto�
col is a comparison�based protocol if the value of vari�

able functions are identical in order�equivalent states�
In the context of the renaming protocol� for example�
this means that the value of the output register is
identical in order�equivalent states�
Given this restriction� a useful technique for prov�

ing lower bounds is to prove that we can keep all pro�
cessors in order�equivalent states for a long time� In
order to do so� we make use of the sandwich fail�
ure pattern� Given processors p�� � � � � pn� suppose
n � �m � for some m �the sandwich failure pat�
tern can immediately fail one or two processors with
the lowest ids at the beginning of the round and pre�
tend they don�t exist�� The sandwich failure pattern
causes the m processors p�� � � � � pm with the lowest
ids and the m processors p�m��� � � � � p�m�� with the
highest ids to fail in the following way� each proces�
sor pm�j � fpm��� � � � � p�m��g receives messages only
from processors pj� � � � � p�m�j� Notice that each such
processor pm�j sees �m � active processors� and
sees its rank in this set of active processors as m ��
Notice also that the active processors after a round
of the sandwich failure pattern is always a consecu�
tive subsequence of processors from the middle of the
sequence of active processors at the beginning of the
round� Using this failure pattern� we can prove the
following�

Proposition �� Given a system of n processors in
the same �initial� state� it is impossible to force these
processors into order�inequivalent states in fewer than
log��n� rounds�

Proof� Notice that the sandwich failure pattern fails
roughly �
� of the active processors� leaving roughly
�
� remaining active in the next round� We claim
that if � � log��n�� then after � rounds of the sand�
wich failure pattern the states si and sj of processors
pi and pj are related by the order�preserving func�
tion 	j�i de
ned by 	k�pi� � pi�k for � � i � n � k
when k � � and for k � � n when k � �� that is�
	j�i�si� � sj � We proceed by induction on ��
The result is immediate for � � � since each pi�s

initial state is �pi� s�� and 	j�i�pi� s� � �	j�i�pi�� s� �
�pj � s�� For � � �� suppose the hypothesis is true for
� � �� Suppose there are �m � active processors at
the beginning of round �� �Again� we can immedi�
ately fail one or two processors with the lowest ids in
the next round and assume that this is true�� Since
the active processors at the beginning of round � are
a consecutive subsequence of p�� � � � � pn� suppose they
are pa��� � � � � pb� Notice that after another round of
the sandwich failure pattern� the active processors
are pa�m��� � � � � pb�m� and that state of processor
pa�m�i is

�pa�m�i �pa�i sa�i� � � � �pa��m�i sa��m�i��

Page �

and the state of processor pa�m�j is

�pa�m�j �pa�j sa�j� � � � �pa��m�j sa��m�j ��

It is easy to see that 	j�i maps the state of pa�m�i

to pa�m�j � as desired�

Since the participating processors start a renam�
ing protocol in order equivalent states �their initial
states consist of their processor id� a � in their in�
put register� and nothing in their output register��
this proposition gives us the desired lower bound for
strong renaming�

Corollary �� Any comparison�based protocol for strong
renaming requires ��log�m� rounds of communica�
tion� where m is the number of participating proces�
sors�

As shown in the previous section� this result yields
a ��log�m� lower bound on a variety of decision prob�
lems and concurrent objects in the comparison model�
where m is the number of concurrent processors� It
is not known whether the same lower bound holds
also for models in which processor identi
ers have a
richer structure� We now show that the technique of
showing that processor states can be forced to remain
order equivalent cannot be used to derive stronger
bounds� If operations of objects such as stacks or
queues require more than a logarithmic number of
rounds� then this lemma strongly suggests that the
additional cost cannot be an artifact of the compari�
son model� but is somehow inherent in the semantics
of the objects themselves�

Proposition �� There exists a protocol that leaves
processors p�� � � � � pn in order�inequivalent states after
O�log n� rounds�

Proof� We give a simple comparison�based algorithm
in which processors choose distinct sequences of in�
tegers after a logarithmic number of rounds� In each
round� each processor broadcasts its identi
er and the
sequence of integers constructed so far� Two proces�
sors collide in a round if they broadcast identical se�
quences� In round �� processor p broadcasts �p� �and
hence all processors collide with the empty sequence��
Let �p i� � � � ik��� be the message p broadcast at
round k � �� and ik the number of processors less
than p that collide with p at round k � �� In round
k� p broadcasts �p i� � � � ik�� Each processor halts
when it does not collide with any other processor�
We claim that the set of processors that collide

with a particular processor must shrink by approxi�
mately half at each round� yielding an O�log n� run�
ning time� Two processors that broadcast di�erent
sequences continue to do so� so the set of processors

that collide with p at round k is a subset of the pro�
cessor that collided with p at earlier rounds� Consider
a set of � nonfaulty processors that collide at round
k� let p be the least processor in that set� and let q be
the highest� Because q must count at least � colliding
processors with lower ids� and because p and q col�
lide at round k� processor p must also see � colliding
processors with lower ids� Since p is minimal� how�
ever� the processors it counts must have failed before
sending to q� hence at least ��� � processors collided
with p and q in round k � �� and at least � � � have
failed�

� Optimal Renaming

We note that the proof of the logm lower bound
for renaming depends on the fact that the renam�
ing problem requires two processors to do di�erent
things� which is impossible in order�equivalent states
in the comparison model� The proof actually applies
to many other situations in which processors are re�
quired to behave in nontrivially di�erent ways� Be�
cause this proof scheme does not make heavy use of
the semantics of the problems under consideration�
it seems possible that the logm lower bound is so
cheap that every decision problem or wait�free imple�
mentation requires signi
cantly more time� In order
to show that this is a meaningful lower bound in the
comparison model� we now give a logm algorithm for
strong renaming�
The algorithm itself is given in Figure �� The basic

idea is that if a processor p hears of �b other partic�
ipating processors� then it chooses a b�bit name for
itself one bit at a time� starting with the high�order
bit and working down to the low�order bit� Every
round� p sends an interval I containing the names it
is willing to choose from� On the
rst round� when
the processor has not yet chosen any of the leading
bits in its name� it sends the entire interval ��� �b��
It sets its high�order bit to � if it
nds it is in the
bottom half of the set of processors it hears from in�
terested in names from the interval ��� �b�� and to �
if it
nds itself in the top half� In the
rst case it
sends the interval ��� �b���� and in the second it sends
��b�� �� �b�� In order to make an accurate prediction
of the behavior of processors interested in names in
its interval I� however� it must wait until every pro�
cessor interested in names in I is interested only in
names in I before choosing its bit and splitting its in�
terval in half� that is� it must wait until its interval I
is maximal among the intervals intersecting I� Con�
tinuing in this way� the processor chooses each bit in
its name� and continues broadcasting its name until
all processors have chosen their name�

Page �

de
ne rank�s� S� � jfs� � S � s� � sgj
de
ne bot�S� � fs � S � rank�s� S� � jSj
�g
de
ne top�S� � S � bot�S�
de
ne bot�S� k� � fs� � S � rank �s�� S� � �b

where � � �b � k � �b��g

broadcast p
P � fp� � p� receivedg
m� dlog jPje
I � ��� �b�

repeat
broadcast �p� I�
I � fI� � �p�� I�� received and I � I� �� �g
P � fp� � �p�� I�� received and I � I� �� �g
if I� 	 I for every I � � I then
if p � bot�P� jIj�
then I � bot�I�
else I � top�I�

until jI�j � � for all I� � fI � � �p�� I�� receivedg

return a� where I � �a� a�

Figure �� A logm renaming protocol A�

There are a few useful observations about the in�
tervals processors send during this algorithm� The

rst is that if processor p sends the interval Ik during
round k� then Ik
 Ik� for all k� � k� The second
is that each interval Ik is of a very particular form�
namely� every interval sent during an execution of A
is of the form �c�j �� c�j �j� for some constant c�
This is easy to see since the
rst interval I� a proces�
sor sends is of the form ��� �b�� and every succeeding
interval Ik is of the form top�Ik��� or bot�Ik���� We
say that an interval I is a well�formed interval if it
is of the form �c�j �� c�j �j� for some constant c�
It is easy to see that any two well�formed intervals
are either distinct� or one is contained in the other�
Notice that every well�formed interval I is properly
contained in a unique minimal� well�formed interval
!I � I� Furthermore� either I � top�!I� or I � bot�!I��
and it is the low�order bit of the constant c that tells
us which is the case� We de
ne the operator !I that
maps a well�formed interval I to the unique minimal�
well�formed interval !I properly containing I
In every round of the algorithm� a processor p

computes the set P of processors with intervals I� in�
tersecting its current interval I� These processors in
P are the processors p is competing with for names
in I� When p sees that its interval I is a maximal in�
terval �that is� all intervals I � received that intersect
I are actually contained in I�� processor p adjusts its

set I to either bot�I� or top�I�� Our
rst lemma es�
sentially says that when p replaces I with bot�I� or
top�I�� there are enough names in I to assign a name
from I to every competing processor� Furthermore�
this lemma shows that when a processor�s interval re�
duces to a singleton set� then this processor no longer
has any competitors for that name�

Lemma �� Suppose p sends interval I during round
k � �� If P is the set of processors sending an interval
I� 	 I during round k� then jP j � jIj�

Proof� We consider two cases� I � bot�!I� and I �
top�!I��
First� suppose I � bot�!I�� Consider the greatest

processor q �possibly p itself� in P � Processor q sent
some interval J 	 I to p in round k� so consider the

rst round � � k that q sent some interval J 	 I to
any processor �and hence to p� in round ��
If � � �� then J is of the form ��� �b�� where �b is

an upper bound on the number of processors q heard
from in round �� and hence on the number of active
processors in round k� and therefore on jP j� the num�
ber of processors sending intervals contained in I in
round k� It follows that jP j � �b � jJ j � jIj�
If � � �� then q sent J 	 I in round �� and q sent

a larger interval !J �	 I in round � � �� In fact� we
must have J � I and !J � !I � for if J � I then !J 	 I
and � is not the
rst round that q sent an interval
contained in I� Let P be the set of processors sending
an interval intersecting !I to q in round � � �� Since
every processor p� � P sending an interval I� 	 I to
p in round k must also send an interval intersecting
!I to q in round � � �� each of these processors must
be contained in P� and hence P 	 P� Since q sent !I
in round � � � and I � bot�!I� in round �� it must be
the case that q � bot�P� j!Ij� at the end of round ����
Since P 	 P and since q is the greatest processor in
P � it must be the case that P 	 bot�P� j!Ij�� It follows
that jP j � j!Ij
� � jIj� as desired�
Now� second� suppose I � top�!I�� The proof in

this case is similar to the proof when I � bot�!I��
except that q is now taken to be the least processor
in P �

Our second lemma shows that when a processor
p selects an interval I � �a� b�� there are enough par�
ticipating processors to assign all names �� � � � � a to
participating processors� In particular� when p�s in�
terval becomes the singleton set �a� a�� then there are
at least a participating processors� and hence a is
valid name for p to choose� We say that a processor
holds an interval �a� b� during a round if �a� b� is its
interval at the beginning of the round� and hence the
the interval it sends during that round �if it sends any
interval at all��

Page �

Lemma 	� If I � �a� b� is a maximal interval sent by
any processor during round k� then there are at least
a�� processors holding intervals �a�� b�� during round
k with b� � a�

Proof� By induction on k�
Suppose k � �� the
rst round processors send

any interval� Then I is of the form ��� �b�� and it is
vacuously true that at least � processors hold intervals
�a�� b�� during round � with b� � ��
Suppose k � �� and the induction hypothesis holds

for k� � k� Suppose I � bot�!I�� Since I is a maximal
interval sent in round k� either I or !I is a maximal
interval sent in round k � �� Since intervals I and !I
have the same lower bound a� the induction hypoth�
esis for k � � says that there are at least a � � pro�
cessors who hold intervals �a�� b�� during round k � �
with b� � a� Since each of these processors holding an
interval �a�� b�� in round k � � must hold an interval
�a��� b��� contained in �a�� b�� in round k� it follows that
there are at least a � � processors holding intervals
�a��� b��� in round k with b�� � b� � a�
Suppose I � top�!I�� Let p be the smallest proces�

sor ever sending I during the execution� If I is the
interval p sent in round �� then we are done� using the
argument for the case of k � �� Suppose� therefore�
that I is not the interval sent by p in round �� It
follows that p must have sent the interval !I � �!a�!b�
in some round k� � k� and then sent the interval
I � top�!I� in round k� �� Since p changed inter�
vals between round k� and k� �� the interval !I must
have been a maximal interval in round k�� and hence
by the induction hypothesis at least !a� � processors
hold intervals �a�� b�� during round k� with b� � !a� No�
tice also that since p changed its interval from !I to
I � top�!I�� at least a � !a � j!Ij
� of the processors
p� sending an interval to p that intersected !I satis
ed
p� � p� Furthermore� since !I was a maximal interval�
each of these intersecting intervals I� was contained
in !I � �!a�!b�� and hence each of these processors p�

sending an intersecting interval could not have been
one of the !a� � processors sending an interval �a�� b��
in round k� with b� � !a� Finally� since p is by as�
sumption the smallest processor sending I � top�!I��
and since any processor p� � p sending an interval
contained in !I must continue sending intervals con�
tained in !I � each of these processors must eventually
send intervals contained in bot�!I� � �!a� a� ��� Con�
sequently� when I
nally becomes a maximal interval
�by round k at the latest�� each of these processors is
holding an interval contained in bot�!I�� and so are at
least !a� � �a� !a� � a� � processors hold intervals
�a�� b�� in that round with b� � a� Since the interval
held by these processors in round k is contained in
the interval they hold in this round� the same is true

in round k�

Finally� since the algorithm terminates when ev�
ery processor�s interval is a singleton set� and since
the size of the maximal interval sent during a round
decreases by a factor of � every round� it is easy
to prove that the algorithm A terminates in logm
rounds�

Lemma
� The algorithm A terminates in logm �
rounds� where m is the number of participating pro�
cessors�

Proof� Consider an arbitrary execution of A� For
each round k� let �k be the least upper bound on
the size of the intervals I sent during round k� In
round �� each processor sends an interval of the form
��� �b� where �b is the least power of two greater than
the number of processors that processor heard from
in round �� It follows that k� � �b � �m for some
m� For any round � � �� any processor p sending
an interval I of maximum size k��� in round � � �
sends one of the intervals top�I� or bot�I� in round
�� since all �well�formed� intervals it receives in round
� � � intersecting I are actually contained in I� It
follows that k� � k���
� for any round � � �� and
hence that klog��m��� � �b
��m� � �� Thus� within
log��m� � � log�m� � rounds� all intervals sent
are of size �� and hence all processors terminate�

With these results� we are done�

Theorem �� The algorithm A solves the strong re�
naming problem� and terminates in log�m� � rounds�
where n is the number of participating processors�

Proof� First� all processors choose a name� since
Lemma � says that the algorithm terminates in log�m�
� rounds� where m is the number of participating pro�
cessors�
Second� the names chosen by processors are dis�

tinct� Suppose two processors p and p� chose the name
a at the end of rounds k and k� � k� respectively�
Processors p and p� must have sent the singleton set
I � �a� a� to all processors in rounds k and k�� and
intervals containing I in all preceding rounds� Since
p could not have terminated in round k unless all
intervals it received were singletons� both processors
must have sent I � �a� a� in round k� and this interval
must have been a maximal interval �all intervals were
singletons�� It follows by Lemma � that � � jIj � ��
which is impossible�
Finally� names chosen are in the interval ���m��

where m is the number of participating processors�
Consider the processor p choosing the highest name a
chosen by any processor� and consider the last round
k in which p send the singleton set I � �a� a�� The

Page �

suggestion�e� �� R�
winner � �� a vector of max�entry

for each �e�� a�� ��� E�� � R
winner �a��� minfwinner �a��� e�g

for each �e�� a�� ��� E�� � R
if winner �a�� � e� then value�e��� a�

for each �e�� a�� ��� E�� � R by increasing e�

if e�
� winner then
value�e��� minfb � � � b
� valueg

return value �e�

increment��
wait for an even round k� then

�� jfe� � E � gen�e�� � kgj
e� hk� pi
E � E feg
broadcast �e� � �� �� E�
receive �e�� a�� ��� E��
repeat

E � union of the E� received
R� f�e�� a�� ��� E�� � �e�� a�� ��� E��

received and gen�e�� � kg
�� minf�� � �e�� a�� ��� E�� � Rg
a� suggestion�e� �� R�
broadcast �e� a� �� E�
receive �e�� a�� ��� E��

until generation k suggestions don�t change
return a

Figure �� An increment register algorithm R�

interval I must have been a maximal interval in round
k� or p would have sent I in round k � as well� It
follows by Lemma � that at least a�� processors hold
intervals �a�� b�� with b� � a in round k� and hence that
a is at most the numberm of participating processors�

� A Wait�free Increment

Register

In this section� we show how a particular strong re�
naming algorithm can be transformed into a wait�free
implementation of an increment register� Our im�
plementation has the property that each invocation
of the increment operation terminates in O�c

�

�
���

rounds� where c is the number of processors invoking
the operation in the same round and � is any positive
real value�
The increment register algorithm R appears in

Figure �� The basic idea behind this algorithm is that
every participating processor p repeatedly computes

a value a and suggests to the rest of the processors
that it be allowed to return this value a� Processor p
makes this suggestion by broadcasting a to the other
processors� It then collects all suggestions broadcast
to it and looks to see how many other processors have
suggested a for themselves� too� If p sees that it is
the least processor suggesting a� then p chooses a for
itself �we say that p is the winner�� Otherwise� p
recomputes a new value and tries again� In this sense�
the protocol is similar to the uniqueness renaming
protocol in ����
One subtle aspect of this protocol is the way in

which processors compute their suggestions� Every
processor maintains a lower bound �� and takes care
that the value it suggests for itself is always above
this lower bound� In addition to broadcasting its sug�
gestion� it broadcasts its lower bound� and resets its
lower bound to be the minimum of the lower bounds
received from concurrent processors� The need for es�
tablishing a lower bound is to ensure linearizability�
the need to repeatedly lower the lower bound is to
ensure a reasonable time complexity� To compute its
preference� a processor p
rst computes the winners
for the various values using the suggestions it has re�
ceived� and assigns these values to the winners� For
the remaining processors� p assigns values to them one
by one in increasing processor order by assigning to
q the least unassigned value above p�s lower bound ��
�We write b
� value to denote that b does not appear
in the vector value �� The name it assigns to itself is
its suggestion for the next round� We note that once
a processor wins the value a� it will win the value a
in every later round� but it must protect its victory
by continuing to participate in the protocol until all
other concurrent processors have successfully chosen
a value for themselves� too�
Because a processor can invoke the increment op�

eration on several di�erent rounds� invocations are
tagged with both the invoking processor�s id and the
round in which the operation was invoked� This tag
is called an entry� which is a pair hk� pi consisting of
a round number k and a processor id p� Entries are
ordered lexicographically by round number and pro�
cessor id� although a distinguished value max�entry

is considered greater than every other entry� We say
that the generation of the entry hk� pi is k� We write
gen�hk� pi� � k� and refer to p as a generation k pro�
cessor� We also refer to an invocation tagged with
hk� pi as an invocation by p� or as a generation k in�
vocation�
Every processor maintains a set E containing all

entries of which it has ever heard �initially� E is empty��
It broadcasts this set� every round� and merges the

�In practice� it need only broadcast the additions to E since

Page

sets it receives by taking their union� �By conven�
tion� a processor always sends to itself�� One impor�
tant point not apparent in Figure � is that even if a
processor p is not currently invoking the increment

operation� it must eavesdrop on broadcasts by other
processors p� who are invoking the increment opera�
tion and merge the sets E� they send with its own�
This is necessary in order for p to have enough in�
formation to be able to invoke the operation itself at
some later time� In particular� p initially sets its lower
bound to the number of entries it has heard of from
earlier generations� so E must be kept up to date�
We note that invocations of the increment operation
always begin on even rounds in order that earlier gen�
erations have enough time to relay all relevant entries
seen to later generations before the later generations
begin�

��� Correctness

The intuition behind a processor�s setting its lower
bound � to the number of processors from previous
generations is that there are already enough proces�
sors to account for the values � through �� The cor�
rectness of the algorithm �in particular� linearizabil�
ity� depends primarily on the fact that the lower
bound is high enough to guarantee that processors
from earlier generations never suggest �or choose� val�
ues above this lower bound� The following result
shows this is true for the initially computed lower
bound�

Lemma ��� If � is the initial lower bound computed
by a generation k processor� then every generation
k� � k processor surviving its second round suggests
only values a � ��

Proof� Suppose � � �p is the initial lower bound
computed by a generation k processor p� and suppose
Ep is the set of entries p used to compute �p� Consider
any generation k� � k processor q surviving its second
round� and let �q be its initial lower bound� computed
using Eq� Let l and u be the number of entries e� �
Ep with gen�e�� � k� and gen�e�� � k�� respectively�
Since q survived its second round� it sent Eq to p at
the end of its
rst round� so Eq 	 Ep� and hence
�q � l � u � �p�
Suppose q suggested the name ��q i during its

round j � �� where ��q � �q is its lower bound during
its jth round� Then q heard from at least i generation
k� processors in its jth round� so it heard from at
least i such processors in its
rst round� at which
point it added these processors to its set Eq and sent
them to p in its second round� It follows that these

its last broadcast�

i processors are contained in Ep� so the di�erence
u � l must be at least i� and hence ��q i � �q i �
l i � u � �p� Thus� q suggests only values a � �p�
as desired�

The next result shows that the successive lowering
of lower bounds is a safe thing to do�

Lemma ��� If � is any �not necessarily initial� lower
bound held by a generation k processor� then every
nonfaulty generation k� � k processor suggests only
values a � ��

Proof� Let ��� � � � � �d be the initial lower bounds com�
puted by the generation k processors p�� � � � � pd� Let
q be a nonfaulty generation k� � k processor� Since q
survived its second round� Lemma �� says that q sug�
gests only names a � �i for every i� and thus a � �min

where �min � minf��� � � � � �dg� Since � was computed
by repeatedly taking the min of lower bounds from
processors of the same generation� it is the result of
taking the min of some subset of ��� � � � � �d� Thus� we
have � � �min� and hence a � � as desired�

We have mentioned that our implementation of
an increment register is a transformation of a simple
strong renaming algorithm� The next result shows
that this implementation can still be viewed as a
strong renaming protocol�

Theorem ��� R solves the strong renaming prob�
lem�

Proof� First� notice that a nonfaulty processor p
with entry e eventually chooses a value� Since only
processors with lower entries from the same gener�
ation can keep p from committing on a value� and
since the processor with the lowest entry from that
generation in a given round either fails or commits�
the number of processors that can keep p from com�
mitting decreases by at least one every round until p

nally chooses a value�
Second� notice that no two nonfaulty processors

choose the same value� Suppose to the contrary that p
and q both choose a� Since processors always suggest
names above their current lower bound� Lemma ��
implies that processors p and q must be from the
same generation� Furthermore� p and q must have
suggested a in the same round� or the later proces�
sor would have seen the earlier processor�s suggestion
and not suggested a for itself� If p and q suggest a in
the same round� however� the larger will observe the
smaller and will not choose a�
Finally� notice that if a processor p suggests a

�and� in particular� chooses a�� then there exist at
least a processors� and hence that every processor
chooses a value from the set f�� � � � �mg� where m is

Page ��

the number of participating processors� To see this�
let �p be the lower bound computed by p using Ep�
and suppose p has suggested the value � i in its jth
round� where � � �p is its lower bound during its jth
round� Then p�s set Ep contained �p � � processors
from earlier generations� and p heard from i proces�
sors from its own generation in its j � �st round� so
there are at least � i processors�

The desired result� however� is an implementation
of an increment register�

Theorem ��� R is a linearizable� wait�free imple�
mentation of an increment register�

Proof� The proof of Theorem �� shows that R is an
implementation of an increment register� distinct in�
vocations of the increment operation return distinct
values� and each value less than any value returned
is �accounted for� by other invocations� perhaps ones
that have halted� To show linearizability� we must
show that operations appear to take e�ect in �real�
time� order� if one operation begins after another has

nished� then the former returns a larger value� But
this is obvious� since Lemma �� implies that invoca�
tions by processors from one generation always return
higher values than invocations by nonfaulty proces�
sors from previous generations�

��� Time Complexity

We now analyze the running time of an invocation of
the increment operation� For the rest of this section�

x a processor p invoking the increment operation in
round r �generation r�� De
ne the concurrency set

to be the number of other processors invoking the
increment operation in the same round� and let c be
the size of this set� All processors and invocations will
be of generation r unless explicitly stated otherwise�
A processor is committed at time k if it is a winner

at time k �that is� if it can choose its suggested value��
and we say that it has been bounced �by a lower pro�
cessor� if it is not� A processor is active at time k if
it has not committed at time k �it has bounced� and
sends at least one message in round k �� An active
processor�s suggestion at time k is the suggestion it
sends in round k �� A collision at time k is a set
of active processors with the same suggestion at time
k� Notice that at most one nonfaulty processor in
a collision at time k will be able to commit at time
k �� Our analysis is based on discovering the most
e�cient way of maintaining large collision sets� and
hence of keeping processors uncommitted�
We note that using a failure pattern somewhat

similar to the sandwich failure pattern� it is possi�
ble to keep an invocation of the increment operation

started at time � running for roughly
p
c rounds� At

time �� a processor�s lower bound is necessarily �� so
the failure pattern�s strategy is to keep processors un�
certain about the number of lower processors starting
at time ��
In general� though� di�erences in the lower bounds

held by various processors can also cause large col�
lisions� These di�erences are initially the result of
failures by processors in very early generations� but
we want the complexity of the algorithm to depend
only on failures within the current generation� It
is for this reason that processors adjust their lower
bounds every round by taking the min of the lower
bounds received from processors in their own gen�
eration� Now disagreement about the lower bounds
must be the result of a failure in the current genera�
tion� Of course� now collisions can occur if processors
change their lower bounds at unexpected times� and
analyzing collisions when this happens is quite dif�

cult� Fortunately� the following result shows that
a processor�s lower bound cannot change too many
times�

Lemma ��� Processor p�s lower bound can change
at most �

p
c times�

Proof� Consider the lower bounds �� � �� � � � � �d�
and suppose that p�s lower bound is lowered to �j for
the
rst time after its kjth round� for j � �� � � � � d�
It is clear that for each �j there must be a se�

quence j � qj��� � � � � qj�kj of processors of p�s gen�
eration such that �i� qj���s initial lower bound is �j �
�ii� every qj�i sent to qj�i�� in round i but failed to
send to p� and �iii� qj�kj
nally sent to p in round kj�
This is because �j must be the initial lower bound
of some processor� and because p would have learned
about �j and hence lowered its lower bound to �j be�
fore the end of its kjth round if any qj�i with i � kj
had not failed to send to p� Furthermore� no proces�
sor can appear in two sequences j and j� � with the
possible exception that the
nal processor in the two
sequences may be the same� To see this� suppose to
the contrary that qj�i � q � qj��i� where i � kj and
i� � kj�� Suppose further that �j � �j� � which implies
that kj � kj�� We must have i � i� since q cannot fail
to p in two separate rounds� Since q�s lower bound in
this round is necessarily �j� � minf�j � �j�g� processor
p learns about this lower bound after round kj and
sets its lower bound to �j� � �j after round kj � kj��
a contradiction�
It follows that the number of distinct processors

of the form qj�i must be at least

�k� � �� �k� � �� � � � �kd � ��
� � � � � �d� �� � d�
��

Page ��

Since these processors are of p�s generation� and since
there are c such processors� we have d�
� � c and
hence d � �pc�
Even though analyzing the number of active pro�

cessors remaining after a round in which p�s lower
bound changes is di�cult� Lemma �� says that we can
essentially ignore these rounds since p�s lower bound
changes only �

p
c times� Since the adversary schedul�

ing processor failures is trying to keep as many pro�
cessors active as possible� giving the adversary the
bene
t of the doubt� we can assume that the number
of active processors does not decrease at all during
such a round� knowing that the resulting running time
will be at most �

p
c longer than the actual running

time�
With this motivation� we now construct a function

A�c� f�� � � � � fk� giving an upper bound on the number
of processors active after k rounds in which p�s lower
bound remains steady and fi processors fail in the ith
such round� Since this function is an upper bound on
the number of active processors� if its value is less
than �� then all processors have terminated within
the
rst k rounds� We then use calculus to show
that this function is maximized by taking f�� � � � � fk
to be roughly

p
c � �� � � � �pc � k� and yet the value

of the function is still less than � when k is roughlyp
c� Consequently� regardless of how many processors

fail in each round� all invocations terminate within
roughly

p
c rounds�

We say that round k is a good round for p if p has
the same lower bound � at times k � �� k � �� k� and
k �� and a bad round otherwise� We de
ne good and
bad rounds only for rounds of the form k � �i� Since
p broadcasts its lower bound � in round k��� everyone
has a lower bound of at most � at time k � �� Some
set Bk of �bad� processors may have lower bounds
di�erent from � at time k � �� but they do not send
to p in round k and hence must fail� Some set B�k of
processors who do not fail in round k may hear from
processors in Bk in round k� and hence have lower
bounds di�erent from � at time k� but they do not
send to p in round k � and hence must also fail� Let
the set Gk of �good� processors be the complement of
B�k in the set of processors surviving to time k� Notice
that Gk and B�k partition the processors surviving to
time k into two sets� those who receive only � as lower
bounds from other processors� and those who do not�
As the following result shows� the adversary must

fail a large number of processors in order to construct
large collisions in good rounds�

Lemma ��� Suppose k is a good round for p� If f
processors fail round in k� then collisions at time k
contain at most f � processors from Gk�

Proof� Suppose C is a collision at time k in an execu�
tion e containing f � processors from Gk� Consider
the execution g di�ering from e only in that every pro�
cessor sending a message to at least one processor in
Gk in round k of e sends messages to every processor
in round k of g� �Notice that this does not change the
messages processors in Bk send� and hence does not
change the lower bounds processors in Gk receive��
Since each processor q � Gk in the collision C is �by
de
nition� uncommitted at time k in e� it has heard
from a smaller processor in round k with the same
time k � � suggestion� Since the same must be true
of round k in g where every processor receives even
more messages� q is uncommitted at time k in g and
computes a time k suggestion� In fact� since every
processor q � Gk receives the same set of messages at
time k in g� they compute the same vector w as the
value of the vector winner � and compute unique �"�
suggestions for themselves�
Given a general vector w� computed as the value

of winner � de
ne a hole in w� to be a name a such that
w��a� does not contain an entry� Given two values a
and b� de
ne the distance between a and b in w� to
be the number of holes between a and b in w�� Given
two such vectors w� and w��� we say w� is a subvector

of w�� they agree on nonempty positions in w�� Notice
that the distance between a and b in w�� is at most
the distance in the subvector w��
We now consider an arbitrary processor q � Gk in

the collision C� and follow the movement of its sug�
gestion as we move through a sequence of executions
from g back to e� failing one by one each of the pro�
cessors p�� � � � � pd that fail in round k of e� Let gi be
the run di�ering from g only in that p�� � � � � pi send
in round k of gi precisely as they do in round k of e�
We claim that if ai and a are q�s suggestions at time
k in gi and g� then ai � a and the distance between
them in w is at most i� We proceed by induction on
i� Since the case of i � � is vacuously true �g� � g��
suppose i � � and the claim is true for i � �� Let wj

be the vector winner computed by q at time k in gj�
and notice that it is a subvector of w�
If wi � wi��� then the only di�erence in q�s com�

putation of its suggestions ai and ai�� is that q may
not have to compute a suggestion for pi before com�
puting its suggestion ai in gi� Since every processor
that q � Gk hears from has the same lower bound�
and since wi � wi��� this means that ai will be no
higher than ai��� and that the distance between them
in wi is at most ��
If wi �� wi��� then the only di�erence between the

two vectors is that pi�s time k�� suggestion b is now
a hole in wi� Let b� and b� be the holes in wi �and
hence in wi��� just above and below b� respectively�
Again� the only di�erence in q�s computation of its

Page ��

suggestions ai and ai�� is that q does not have to
compute a suggestion for pi before computing ai in
gi for itself� Again� ai will be no higher than ai���
and that the distance between them in wi is at most
�� Notice� however� that ai may fall only from b� to
b in wi instead of all the way down to b� as it would
in wi���
In either case� ai � ai�� � a� Furthermore� the

distance between a and ai�� is at most i � � in w�
and the distance between ai and ai�� is at most � in
wi �and hence in w since wi is a subvector of w�� so
the distance between a and ai in w is at most i�
Thus� q�s suggestion in g falls to its suggestion in

e� moving distance at most one in w with the failure
of each processor� Since processors q � Gk in C have
distinct suggestions aq in g and the same suggestion
a � aq in e� and since there are f � processors from
Gk in C� some processor q � Gk in C must have to
move down at least f � holes in w from its suggestion
in g to its suggestion in e� This means that at least
f � processors must fail in round k� contradicting
the fact that only f processors fail�

Notice that a set of failing processors can cause
the greatest number of processors to remain active
by creating as few collisions as possible� since at most
one processor in every collision will be able to commit�
De
ne

A�c� f� �
�c � f��f

��f ��
�

We have the following�

Lemma ��� Suppose k is a good round for p� If c
processors are active at time k � � and f processors
fail in round k� then the number of active processors
at time k � is at most A�c� f��

Proof� Notice that Bk is some subset of the f pro�
cessors failing in round k �since p does not hear from
them at time k�� Furthermore� Gk B�k is the set of
c � f processors surviving to time k� and all proces�
sors in B�k fail in round k � �since p does not hear
from them at time k ���
Suppose jGkj � �c� f�
�� Then jB�kj � �c�f�
��

and since every processor in B�k has failed by time
k �� the number of active processors at time k �
is at most

�c� f� � jB�kj � �c � f� � �c� f�

�
�
�c� f�

�

� �c � f��f

��f ��
� A�c� f��

On the other hand� suppose jGkj � �c � f�
��
Some processors in Gk commit at time k� and the
rest bounce� Let mc and mb be the number of pro�
cessors in Gk that commit and bounce� respectively�

By Lemma ��� no time k collision contains more than
f � processors from Gk� so there must be at least
mb
�f �� time k collisions� Since the lowest pro�
cessor in every collision is guaranteed either to fail or
to commit by time k �� at least mb
�f �� of the
bouncing processors are no longer active at time k ��
Since the same is clearly true for the mc processors
in Gk committing at time k� at least

mb

�f ��
 mc �

mb mc

�f ��
�

jGkj
�f ��

�
�c� f�

��f ��

processors in Gk are no longer active at time k ��
It follows that there are at most

�c� f� � �c � f�

��f ��
� �c� f� � �c � f�

��f ��
� A�c� f�

active processors at time k ��

Since the concurrency set has size c� the number
of active processors at the beginning of the
rst good
round is c� � c� Lemma �� says that A�c�� f�� is an
upper bound on the number of active processors af�
ter this
rst good round if f� processors fail in this
round� and hence so in A�c� f�� since A�c� f� is mono�
tonic in c� Similarly� it is easy to see that at most
A�A�c� f��� f�� processors are active after two good
rounds in which f� fail in the
rst and f� in the sec�
ond� Continuing in this way� if we de
ne

A�c� f�� � � � � fk� � A�A�c� f��� f�� � � �fk��

then Lemma �� and a simple argument by induction
on k yields�

Lemma �	� If fi processors fail in the ith good round
for p� then the number of processors active after k
good rounds is at most A�c� f�� � � � � fk��

We note that

Lemma �
� A�c� f�� � � � � fk� is monotonic in c�

The following result tells us that in order to keep
the greatest number of processors active� we need only
fail

a�c� �
�

�
�
p
�c �� ��

processors in a round with c active processors� Notice�
by the way� that A�c� a�c�� � �a�c���

Lemma ��� For a
xed c� the value of A�c� f� is
maximized when f � a�c��

Proof� The function

�A

�f
�c� f� �

��f ����c� �f� � �cf � f��

��f ���

Page ��

has a single positive root at a�c��

Intuitively� therefore� failing a�c� processors every
round is the best strategy the adversary has for keep�
ing R from terminating� To make this precise� de
ne

A��c� � A�c� a�c��

Ak�c� � Ak���A��c��

Informally� Ak�c� is an upper bound on the num�
ber of active processors after following this strategy
for k good rounds starting with c active processors�
The following shows that the strategy of failing a�c�
processors every round is indeed the adversary�s best
strategy�

Lemma ��� Ak�c� is the maximal value ofA�c� f�� f�� � � � � fk��

Proof� By induction on k� For k � �� Lemma �
implies A��c� � A�c� a�c�� is the maximal value of
A�c� f��� For k � �� assume the statement is true
for k � �� Since A�c� f�� � A��c�� and since Lemma
�� implies that A�c� f�� � � � � fk� is monotonic in c� we
have

A�c� f�� f�� � � � fk� � A�A�c� f��� f�� � � � � fk�

� A�A��c�� f�� � � � � fk��

Finally� the induction hypothesis implies that

A�A��c�� f�� � � � fk� � Ak���A��c�� � Ak�c�

Since Ak�c� is the upper bound on the number of
active processors after k good rounds� we can prove
the following lemma showing that bounding the run�
ning time of an invocation with concurrency set of
size c reduces to
nding the least value of k for which
Ak�c� � ��

Lemma ��� If Ak�c� � �� then any invocation with
concurrency set of size c terminates within k good
rounds�

Proof� Consider any invocation in which fi proces�
sors fail in the ith good round� i � �� � � � � k� The
protocol terminates when the number of active pro�
cessors falls below one� A�c� f�� � � � fk� is an upper
bound for the number of active processors at the end
of the kth good round by Lemma ��� and Ak�c� is an
upper bound for A�c� f�� � � � � fk� by Lemma ���

The next three lemmas are simply technical re�
sults needed to help us
nd this least such k�

Lemma ��� For � � � � ��

lim
c��

c� � �c � ��� � ��

Proof� Let f�c� � c�� The derivative f ��c� � �c���

approaches zero for large c because � � �� By the
Mean Value Theorem of Calculus� there exists an xc
between each c� � and c such that

f ��xc� � f�c� � f�c � ��
Since the left�hand side limits to zero� so does the
right�hand side�

For the remainder of this section� let f�c� � c����

Lemma ��� For su�ciently large c�

f�c� � f�c � �� �p
�

p
f�c � ���

Proof� Let � � ��� ��
��

f�c� � f�c � �� � c�� � �c� ����

The last expression is equivalent to�

�c� � �c � �����c� �c � ����
By Lemma ���

lim
c��

c� � �c� ��� � ��

In particular� there exists a C such that c���c���� �
�
��

p
�� for c � C� Also�

lim
c��

c� �c � ��� � ��c� ����

so there exists a C� such that c� �c���� � ��c����
for c � C�� For c � max�C�C���

�c� � �c � �����c� �c� ���� � �p
�
�c� ���

�
�p
�

p
f�c � ���

Lemma ��� A�f�c�� � f�c��� for su�ciently large c�
Proof� From Lemma ���

�f�c� � �f�c � �� �
p
�f�c � ���

Completing the square by adding one to each side�

�f�c� � � �
p
�f�c � �� ����

Taking the square root�
p
�f�c� � �

p
�f�c � �� ��

Subtracting one from each side�
p
�f�c� �� � �

p
�f�c� ���

Page ��

and squaring�

�
p
�f�c� �� ��� � �f�c � ���

we have
A�f�c�� � f�c � ��

since A�c� � �a�c���

Lemma ��� Ak�f�k�� � � for su�ciently large k�

Proof� By induction on k� For k � ��

A��f���� � A���� � �a���
� �

�

�
�
p
�� ��� � ��

For k � �� assume the result for k � �� By Lemma
��� and because Ak�� is monotonic�

Ak�f�k�� � Ak���f�k � ����

The right�hand side is less than or equal to � by the
induction hypothesis�

Theorem ��� Fix � � �� Any invocation of the
increment operation with a concurrency set of size
c terminates within O�c

�

�
��� rounds�

Proof� Given �� � � and su�ciently large c� Lemma ��
and the monotonicity of Ak�c� imply that if c �
f�k� � k���

�

� then Ak�c� � Ak�f�k�� � �� Lemma ��
therefore implies that the invocation halts in c������

�� �
c
�

�
�� good rounds� Since p�s lower bound can change

at most �
p
c times� and since good and bad rounds

are de
ned only for rounds of the form k � �i� the
required number of good rounds must occur within
��c

�

�
�� �

p
c� � O�c

�

�
��� rounds�

	 Conclusions

This paper represents a
rst step in exploring the
complexity hierarchy of wait�free concurrent objects
in message�passing systems� It was previously known
that any object �or decision problem� can be imple�
mented in O�n� rounds using atomic broadcast� where
n is the degree of replication� Little was known� how�
ever� about whether there exist nontrivial objects or
decision problems that can be implemented more ef�

ciently� In this paper� we identify two simple but
nontrivial examples� strong renaming is a decision
problem that can be solved in time logarithmic in
the number of active participants� and an increment
register is an object that can be implemented in time
approximately the square root of the number of con�
current operations� These results demonstrate that
algorithms that exploit the semantics of the problem
can sometimes be substantially more e�cient than

general�purpose algorithms� We believe that the fun�
damental open problem in understanding synchronous
message�passing systems is to elucidate the nature of
this complexity hierarchy�
The
rst step to understanding the complexity hi�

erarchy is to establish lower bounds� We have pro�
posed a general and e�ective technique for deriving
type�speci
c lower bounds for concurrent objects� re�
duction to a decision problem� In this paper� we es�
tablish a lower bound on strong renaming� and we
use this lower bound to derive lower bounds for incre�
ment registers� ordered sets� and related data types�
Reduction to a decision problem is an e�ective tech�
nique because concurrent objects are hard to analyze
directly� Unlike decision problems� in which proces�
sors start simultaneously� compute for a while� and
halt with their outputs� concurrent objects have un�
bounded lifetimes during which they must handle an
arbitrary number of operations� these operations can
be invoked at any time� and the order in which opera�
tions are invoked is often important� It is an interest�
ing open question to identify other decision problems
of complexity intermediate between strong renaming
and consensus that also yield lower bounds for wait�
free concurrent objects�
Upper bounds have proven more di�cult than lower

bounds� Our approach here has been to try to convert
solutions to decision problems into implementations
of long�lived objects� For example� the increment reg�
ister implementation given in Section � is based on a
simple O�m

�

�
��� strong renaming algorithm� The re�

sulting O�c
�

�
��� implementation is substantially more

e�cient than an O�n� general�purpose algorithm us�
ing atomic broadcast� especially since the degree of
concurrency c itself is typically much less than n� the
total number of processors� On the other hand� this
implementation is also substantially less e�cient than
the log c lower bound implied by the reduction to re�
naming� Our attempts to adapt the logm renam�
ing algorithm were unsuccessful� primarily because
we were unable to achieve linearizability # despite
our best e�orts� a later operation could sometimes
return a lower value than an earlier operation� We
leave as open questions the problem of establishing
better upper bounds for increment registers� stacks�
queues� and related objects�

Acknowledgements We thankMargaret Tuttle for
her comments on our proofs and presentation�

References

��� H� Attiya� A� Bar�Noy� D� Dolev� D� Koller� D� Pe�
leg� and R� Reischuk� Achievable cases in an asyn�

Page ��

chronous environment� In Proceedings of the ��th
IEEE Symposium on Foundations of Computer Sci�
ence� pages ���	�
�� October ����

��� H� Attiya� A� Bar�Noy� D� Dolev� D� Peleg� and
R� Reischuk� Renaming in an asynchronous envi�
ronment� Journal of the ACM� July �����

��� J�E� Burns and N�A� Lynch� The Byzantine �ring
squad problem� Advances in Computing Research�
Parallel and Distributed Computing�
��
�	����
���� Available as Technical Report MIT�LCS�TM	
���� MIT Laboratory for Computer Science�

�
� J�E� Burns and G�L� Peterson� The ambiguity of
choosing� In Proceedings of the th Annual ACM
Symposium on Princples of Distributed Computing�
pages �
�	��� Edmonton� Alberta� August ����

��� B� Coan� D� Dolev� C� Dwork� and L� Stockmeyer�
The distributed �ring squad problem� In Proceedings
of the ��th ACM Symposium on Theory of Comput�
ing� pages ���	�
�� May ���� Available as IBM
Research Report RJ ��
�� ����

��� D� Dolev� C� Dwork� and L� Stockmeyer� On the
minimal synchrony needed for distributed consensus�
Journal of the ACM� �
������	��� January ����

��� D� Dolev and H�R� Strong� Polynomial algorithms
for multiple processor agreement� In Proc� �	th ACM
Symp� on Theory of Computing� pages
��	
��� May
����

�� C� Dwork� N�A� Lynch� and L� Stockmeyer� Consen�
sus in the presence of partial synchrony� Journal of
the ACM� �������	���� April ���

��� C� Dwork and Y� Moses� Knowledge and common
knowledge in a Byzantine environment I� crash fail�
ures �extended abstract�� In Joseph Y� Halpern� ed�
itor� Theoretical Aspects of Reasoning about Knowl�
edge� Proceedings of the �
�� Conference� pages �
�	
���� Morgan Kaufmann� ���� To appear in Informa�
tion and Computation� Also available as MIT Tech�
nical Memo MIT�LCS�TM	����

���� M� Fischer� N�A� Lynch� and M�S� Paterson� Impossi�
bility of distributed commit with one faulty process�
Journal of the ACM� ������ April ����

���� M�J� Fischer and N�A� Lynch� A lower bound for the
time to assure interactive consistency� Information
Processing Letters� �
�
����	��� June ����

���� G�N� Frederickson and N�A� Lynch� Electing a leader
in a synchronous ring� Journal of the ACM� �
�����	
���� January ����

���� M�P� Herlihy� A quorum�consensus replication
method for abstract data types� ACM Transactions
on Computer Systems�
���� February ����

��
� M�P� Herlihy� Impossibility and universality re�
sults for wait�free synchronization� In Seventh ACM
SIGACT�SIGOPS Symposium on Principles of Dis�
tributed Computing �PODC� August ���

���� M�P� Herlihy and J�M� Wing� Axioms for concurrent
objects� In �	th ACM Symposium on Principles of
Programming Languages� pages ��	��� January ����

���� C�P� Kruskal� L� Rudolph� and M� Snir� E�cient syn�
chronization on multiprocessors with shared mem�
ory� In Fifth ACM SIGACT�SIGOPS Symposium on
Principles of Distributed Computing� August ����

���� L� Lamport� Time� clocks� and the ordering of events
in a distributed system� Communications of the
ACM� ��������	���� July ����

��� L� Lamport� How to make a multiprocessor computer
that correctly executes multiprocess programs� IEEE
Transactions on Computers� C���������� September
�����

���� L� Lamport� The part�time parliament� Technical
Report
�� Digital Equipment Corporation� Systems
Research Center� September ����

���� C�H� Papadimitriou� The serializability of concurrent
database updates� Journal of the ACM� ���
�����	
���� October �����

���� M� Pease� R� Shostak� and L� Lamport� Reaching
agreement in the presence of faults� Journal of the
ACM� ��������	��
� ����

���� F�B� Schneider� Implementing fault�tolerant services
using the state machine approach� a tutorial� Techni�
cal report� Cornell Computer Science Dept�� Novem�
ber ����

���� E� Styer and G�L� Peterson� Tight bounds for shared
memory symetric mutual exclusion problems� In Pro�
ceedings of the �th Annual ACM Symposium on Prin�
ciples of Distributed Computing� pages ���	���� Au�
gust ����

��
� M�R� Tuttle� Knowledge and Distributed Computa�
tion� PhD thesis� M�I�T�� ����

Page ��

