Wait-Free Computation in Message-Passing Systems:

Preliminary Report

Maurice P. Herlihy

Mark R. Tuttle

DEC Cambridge Research Lab
One Kendall Square
Cambridge, MA 02139

Abstract: We explore the time complexity of wait-
free implementations of concurrent objects in syn-
chronous, message-passing systems. Our technique
is to reduce the (difficult) problem of analyzing all
possible wait-free implementations for a particular
object to the (more tractable) problem of analyz-
ing a related decision problem. The decision prob-
lem we consider is strong renaming, in which an arbi-
trary subset of m out of n processors choose unique
names in the range 1...m, where m is not known
in advance. We prove tight logm bounds on the
number of rounds of communication needed to solve
this renaming problem. As a result, we derive corre-
sponding lower bounds for wait-free implementations
of a variety of objects such as stacks, queues, prior-
ity queues, and fetch&add registers, as well as for
decision problems such as f-assignment and order-
preserving renaming. Conversely, we show how a par-
ticular strong renaming algorithm can be transformed
into an O(m%‘l'f) implementation of an object called
an increment register, a substantial improvement over
conventional O(n) techniques. Our results suggest
the existence of a nontrivial complexity hierarchy for
wait-free implementations of concurrent objects.

1 Introduction

A concurrent object is a data structure shared by con-
current processors. An implementation of a concur-
rent object is wait-free if every nonfaulty processor
can complete any operation in a finite number of steps
despite the failure of n—1 other processors, where n is

This paper appeared in Proceedings of the 9th Annual ACM
Symposium on Principles of Distributed Computing, pages 347—
362, ACM, August 1990.

the number of processors in the system. In this paper,
we prove a new lower bound for the time complexity
of wait-free implementations of a class of concurrent
objects in message-passing systems. We prove our
lower bound in a synchronous model where proces-
sors may cresh at any time. As a result, our lower
bounds apply to many other message-passing mod-
els, including asynchronous and semi-synchronous, as
well as models that permit lost messages, Byzantine
failures, etc.

Upper bounds for this model are well known. For
example, the state machine methodology of Lamport
[17, 19] and Schneider [22] is a general-purpose tech-
nique that can be adapted to a variety of failure mod-
els. The object is implemented as a replicated col-
lection of uninterpreted deterministic automata, and
atomic broadcast is used to ensure that each automa-
ton executes the same operations in the same order.
In the crash failure model, atomic broadcast requires
time (n), yielding an immediate upper bound for any
wait-free concurrent object. It is also known that con-
sensus [14] can be used to construct wait-free imple-
mentations of a concurrent objects in shared-memory
models, and it is not difficult to show the same in
message-passing models. Consensus, like atomic broad-
cast, is 6(n) in this model [11]. Given these bounds, it
is natural to ask whether one can achieve better per-
formance by designing “customized” algorithms that
exploit the semantics of the object, in the same way
that type-specific replication techniques have been
developed for the atomic transaction model [13].

Although lower bounds have been extensively stud-
ied for decision problems, [3, 5, 7, 8, 9, 11, 21, 24]
concurrent objects have received less attention. Our
technique is to reduce the (difficult) problem of an-
alyzing all possible wait-free implementations for a
particular object to the (more tractable) problem of
analyzing arelated decision problem. Any lower bound
for the decision problem translates immediately to a
lower bound for the concurrent object. The lower
bounds presented here are derived by analyzing the

Deaven 1

complexity of the strong renaming problem, informally
defined as follows: Given a set of n processors with
ids taken from an ordered set, design a protocol that
allows an arbitrary subset of 1 < m < n processors to
choose unique names in the range 1...m, where m is
not known in advance. This problem is called strong
renaming because the range of names chosen must
equal the number of participants, which is known to
be impossible in asynchronous systems [1, 2]. Re-
naming algorithms are interesting in their own right
and have been extensively studied in asynchronous
systems [1, 2].

In this paper, we prove a tight logm bound on
the number of rounds of communication needed to
solve the strong renaming problem. This lower bound
yields corresponding lower bounds for a variety of in-
teresting data types. For example, it is a simple mat-
ter to solve strong renaming given, say, a wait-free
first-in-first-out (FIFO) queue. One simply initial-
izes the queue to hold the integers 1...n, and each of
the m processors dequeues its name. The 6(logm)
complexity of renaming translates directly into an
Q(log m) lower bound on any wait-free implementa-
tion of the dequeue operation for FIFO queues. Minor
variations of this argument yield lower bounds for op-
erations of many other data types, including stacks,
priority queues, fetch&add registers [16], and oth-
ers. This argument also yields lower bounds for deci-
sion problems that solve strong renaming, including
{-assignment [4] and order-preserving renaming [2].
Elsewhere [14], a similar kind of reduction (to con-
sensus [6, 10]) was used to derive impossibility results
for wait-free concurrent objects in the asynchronous
shared-memory model. Our results here show that
reduction to a decision problem can be adapted to
yield complexity as well as impossibility results.

How tight are these lower bounds for concurrent
objects? In general, we don’t know. The inherent
complexity of a concurrent object is closely related to
the algebraic structure of its operations. For example,
consider a FIFO queue extended with a peek opera-
tion that returns but does not remove the oldest item.
It is easy to show that the extended queue can solves
consensus, and hence its operations require time 8(n)
in the crash failure model. By contrast, the queue
without the peek operation cannot solve consensus
among three or more processors [14], and indeed, the
inherent complexity of a FIFO queue in this model
remains an open question. Nevertheless, there do ex-
ist simple concurrent objects for which type-specific
algorithms yield better than O(n) complexity. In this
paper, we give a wait-free implementation of a regis-
ter that provides an atomic increment operation in
which each increment requires time O(c%‘l'e), where
¢ is the number of concurrent operations starting in

the same round. Interestingly, this implementation is
just a simple transformation of a relatively inefficient
O(m%‘l'f) strong renaming protocol.

The rest of this paper is organized as follows. We
define our model of computation in Section 2. We
define the strong renaming problem in Section 3, and
in Section 4 we show how to reduce proving lower
bounds on the complexity of several concurrent ob-
jects to proving lower bounds for the strong renam-
ing problem. In Section 5, we prove our log m lower
bound for strong renaming, and in Section 6 we show
that this bound is actually tight with an efficient
strong renaming algorithm. In Section 7 we show
how to transform a particular renaming algorithm
into a wait-free implementation of an increment reg-
ister. Finally, we close with a discussion of some open
problems in Section 8.

2 Model

We begin with a description of our model of computa-
tion. Loosely speaking, we consider synchronous sys-
tems of n unreliable processors pi,...,pn who share
a global clock that starts at time 0 and advances in
increments of one. We assume that any processor can
send a message to any other processor. Computation
proceeds via a sequence of rounds. Round k lasts from
time k—1 to k, and consists of three phases. Each pro-
cessor first receives the messages sent to it by other
processors in the preceding round. It then performs
some local computation, based on its current local
state and the messages just received, to determine its
next local state and the messages it wishes to send
to other processors. Finally, it sends these messages
to the other processors. Communication is reliable,
in that a message sent is guaranteed to be delivered,
but processors may crash at any time, perhaps after
having set only a subset of the messages it wanted to
send during that round.

More formally, a global state of the system is a
tuple (s1,..., Sn,€), where s; is the local state of pro-
cessor p; and e is the state of the environment. A
processor’s local state contains its id, the time on
the global clock, and the entire history of messages
received from other processors so far. The environ-
ment contains the set P of processors in the system,
and any other information of relevance to the system
that cannot be deduced from processors’ local states.
An ezecution is a sequence gogi - - - g, of global states
where go is an initial state, and g; is the global state
of the system at time 3.

We assume that every processor is following a de-
terministic protocol that determines what actions it
performs. For our purposes, a protocol is simply a

TP vem O

function from a processor’s local state (including its
id and the messages it received in the last round) to its
next local state and the set of messages it is to send to
processors in the next round. Processors always fol-
low their protocol, except that some processors may
crash (or fail) in the middle of a round and do not
participate in the protocol from that point on. We as-
sume that the state of the environment contains the
set F' of processors who have failed in the execution
thus far, and a tuple (p, k, S) for every p € F indicat-
ing p failed in round k& after sending to processors in
S. This means that p sends every message required
by the protocol in rounds 1 through k£ —1, sends every
message it is required to send to processors in S in
round k and fails to send any message it is required to
send to processors in P — S in this round, and sends
no messages in any later round. A processor is con-
sidered faulty in an execution if it fails in some round
of that execution, and nonfeulty otherwise. We say
that a processor survives its kth round if it has not
failed in its first k& rounds.

Our primary concern in this paper is the wait-free
implementation of concurrent objects. Informally, an
object is simply a data structure, possibly replicated
at multiple processors. (We note in passing that in
the message-passing model, where processors do not
share memory, any wait-free implementation of an ob-
ject must be replicated at every processor.) It has a
type, which defines the set of possible values the ob-
ject can assume, and a set of operations that provide
the only means to access or modify the object. An
operation is split into an invocation sent by a proces-
sor to an object in one round, and a response sent
from the object to the processor in a later round.

Each object has a sequential specification that de-
fines how it behaves when a sequence of operations
are executed one at a time by a single processor; that
is, for each operation in the sequence, the proces-
sor waits for that operation’s response before issu-
ing the next operation’s invocation. If the object is
shared by concurrent processors, however, it is neces-
sary to give a meaning to executions in which several
processors have issued invocations for several oper-
ations before receiving the corresponding responses.
Loosely speaking, an object is linearizable [15] if each
operation appears to take effect instantaneously at
some point between the operation’s invocation and
response messages. This means that operations ap-
pear to have happened in some sequential order, one
that preserves the order of nonconcurrent operations:
if one operation ends before another begins, then the
first appears to have happened before the second. In
this sense, linearizability is a correctness condition
for concurrent objects that permits programmers to
reason about concurrent objects as if they were se-

quential.

More precisely, an execution e is linearizable if the
sequential specification is satisfied by some sequential
execution obtained by reordering events in e as fol-
lows: for every operation o appearing e, (i) choose
some time t, between a’s invocation and response,
and (ii) reorder e so that the invocation/response pair
for a appears before the invocation/response pair for
B iff t, < tg. Notice that linearizability preserves the
order of nonoverlapping operations: if a’s response
appears in an execution before 3’s invocation, then o
is ordered before 8. An object is linearizable if each of
its executions is linearizable. Although linearizability
was originally proposed for asynchronous systems, it
applies equally well to synchronous systems. It is re-
lated to (but not identical to) correctness criteria such
as sequential consistency [18] and strict serializabil-
ity [20]. In this paper, we consider only linearizable,
wait-free implementations of concurrent objects.

A processor crash can prevent an operation from
ever returning a response. In this case, the lineariz-
ability condition permits the operation to be ordered
at any point after the invocation, or to have no effect.
The response effectively occurs at time infinity, and
the operation may appear to occur at any point in the
resulting interval, including infinity. In any event, the
operation is atomic: it either appears to everyone to
have taken effect at a particular point, or it appears
to everyone never to have happened at all.

3 Strong Renaming

The strong renaming problem is defined as follows.
Each processor has a unique id taken from a totally-
ordered set of ids. Each processor also has a read-
only input register and a write-once output regis-
ter as part of its local state. At time 0, each pro-
cessor’s input register is initialized with either 0 or
1 (meaning “don’t participate” or “participate,” re-
spectively), and its output register is empty. The
initial state of a processor at time 0 consists simply
of its id and the contents of its input and output
registers. A protocol is a solution for the renaming
problem tolerating n — 1 failures if the output regis-
ters of the nonfaulty participating processors contain
distinct values from {1, ..., m} at the end of every ex-
ecution in which at most n — 1 processors fail, where
m < n is the number of participating processors.

4 Wait-free Lower Bounds

Our technique for proving lower bounds on the com-
plexity of wait-free implementations of concurrent ob-

DaAaven 2

jects is to reduce the analysis of concurrent objects to
the analysis of the strong renaming decision problem.

For example, an ordered set S is a data structure
whose value is some subset of a totally ordered set T,
with an insert(a) operation that adds a € T to S and
a remove operation that removes minimum element
a € S from S and returns ¢. Many interesting con-
current objects such as stacks, queues, and heaps are
special cases of ordered sets. Because we can solve
the strong renaming problem given any wait-free im-
plementation of an ordered set, any lower bound on
the renaming problem implies a lower bound on the
remove operation of an ordered set:

Proposition 1: If Q(f(m)) rounds of communica-
tion are required by any protocol for strong renaming,
where m is the number of participating processors,
then Q(f(c)) rounds of communication are required
by any wait-free implementation of the ordered set’s
remove operation, where c is the number of concur-
rent invocations of the remove operation.

Proof: Let S be a wait-free implementation of an
ordered set, and let g an initial global state for S
in a system with n processors pi,...,p,. Without
loss of generality, suppose the value of S is a subset
of the integers. Consider the sequential execution of
the operations insert(1),. .., insert(n) starting in the
global state g. This execution brings the system to a
global state h in which the ordered set contains the
values 1 through n. Any concurrent execution of m
remove operations is guaranteed to return the values
1 through m in some order. Thus, a simple strong re-
naming algorithm takes h as its initial state and has
each participating processor perform a remove oper-
ation and output the integer returned as its name.
If the remove operation can be implemented in f(c)
time, where c is the number of concurrent processors,
then the strong renaming problem can be solved in
f(m) time, where m is the number of participating
processors. Consequently, any Q(f(m)) lower bound
for strong renaming implies an Q(f(c)) lower bound
for an ordered set’s remove operation.

Since an ordered set’s remove operation is just
a special case of a stack’s pop, a queue’s dequeue,
and a heap’s min, a lower bound for strong renaming
implies a lower bound for each of these operations as
well.

As another example, consider the increment reg-
ister. An increment register is just a special case of
a fetch&add register. The value of an increment reg-
ister is just an integer, initially 0. The increment
register provides an increment operation that atomi-
cally increments the value of the register and returns
this new value. Again, a lower bound for renaming

implies a lower bound for an increment register’s in-
crement operation:

Proposition 2: If Q(f(m)) rounds of communica-
tion are required by any protocol for strong renaming,
where m is the number of participating processors,
then Q(f(c)) rounds of communication are required
by any wait-free implementation of the increment reg-
ister’s increment operation, where c is the number of
concurrent invocations of the increment operation.

Proof: Let R be a wait-free implementation of an in-
crement register, and let g be an initial global states
for R in a system with n processors p1,...,pn. Re-
call that R’s initial value is 0 in g. Any concurrent
execution of m increment operations is guaranteed
to return the values 1 through m. Thus, a simple
strong renaming algorithm takes g as its initial state
and has each participating processor perform an n-
crement operation and output the returned value as
its name. [

These results show that we can prove lower bounds
on the complexity of wait-free implementations of
several interesting concurrent objects by proving lower
bounds on the strong renaming decision problem. We
note that similar results hold in many other mod-
els, such as asynchronous systems, and hence that
lower bounds for strong renaming in these models also
imply lower bounds for wait-free implementations of
concurrent objects. These reductions can also be used
to prove impossibility results. For example, since it
follows from the results of [1, 2] that the strong re-
naming problem cannot be solved in asynchronous
systems, we see that there is no wait-free implemen-
tation of an ordered set in such systems. Such results
also follow from [14] where reductions to consensus
are also used to prove several impossibility results for
wait-free implementations. We note that similar re-
duction between renaming and other decision prob-
lems such as /-assignment and order-preserving re-
naming are also possible, meaning that lower bounds
on strong renaming imply lower bounds on these de-
cision problems as well.

5 Renaming Lower Bound

In this section, we prove a lower bound of Q(log m) on
the number of rounds of communication required to
solve the strong renaming problem for a reasonably
general class of protocols. We restrict our attention to
comparison-based protocols in which we assume the
existence of a totally ordered set of processor ids and
we assume that the only operations a processor can
perform on processor ids is to test for equality and
order; that is, given two ids p and g, a processor can

Paaverm A

test for p = ¢q, p < ¢, and p > ¢, but cannot exam-
ine the structure of the ids in any more detail. The
restriction to comparison-based protocols is a reason-
able one to make in systems where there are many
more processor ids than there are processors. In such
systems, there may be no effective way to enumerate
all possible processor ids, and no way to tell whether
there exists a processor with an id between two other
ids. Furthermore, since there are so many possible
ids, it is not feasible to use processor ids as indices
into data structures as is frequently done in wait-
free implementations of objects like atomic registers
(cf. [23]).

In order to make this restriction precise, it is con-
venient to assume that all protocols are of a particu-
lar form. Following Frederickson and Lynch [12], we
assume without loss of generality that each proces-
sor’s local state consists of its id, its initial state, and
the entire history of messages it has received; and we
assume that processors simply broadcast their entire
local state in every round. We represent a processor’s
local state with a LISP S-expression. The initial state
for a processor p in initial state s is written (p, s),
and later states are written (p mo ... my), where
mo, ..., my 1s the sequence of messages received in
the previous round (themselves S-expressions repre-
senting the states of the sending processors), sorted
by processor identifiers. By convention, p also sends
to itself in each round. We note that the reason we
can assume processor states have such a special rep-
resentation is that from such a description of a pro-
cessor’s state we can reconstruct the value of every
variable v appearing the the actual state. It is conve-
nient to associate with every such variable v a variable
function f, mapping S-expressions to the value of v
in the corresponding processor state represented by
the S-expression.

Loosely speaking, two processor states s and s’ are
order equivalent if (i) they are structurally equivalent
S-expressions, (ii) initial states from corresponding
positions in s and s’ are identical, and (ii) if two ids
p and g taken from s satisfy p < ¢, then the two
ids p' and ¢’ taken from corresponding positions of
s' satisfy p' < ¢'. Intuitively, two order equivalent
states must look identical to any protocol that can
only compare processor ids for order. More formally,
a one-to-one function ¢ from a processor id p to a
processor id ¢(p) is order-preserving if p < ¢ implies
#(p) < ¢(g). Any such ¢ can be extended to processor
states (S-expressions) by defining ¢(p, s) = (¢(p), s)
and ¢(p mo ... mx) = ($(p) P(mo) -.. b(m)).
Two processor states are order equivalent if there ex-
ists an order-preserving function ¢ mapping one to
the other, and order inequivalent otherwise. A proto-
col is a comparison-based protocol if the value of vari-

able functions are identical in order-equivalent states.
In the context of the renaming protocol, for example,
this means that the value of the output register is
identical in order-equivalent states.

Given this restriction, a useful technique for prov-
ing lower bounds is to prove that we can keep all pro-
cessors in order-equivalent states for a long time. In
order to do so, we make use of the sandwich fail-
ure pattern. Given processors pi,...,Pn, suppose
n = 3m + 1 for some m (the sandwich failure pat-
tern can immediately fail one or two processors with
the lowest ids at the beginning of the round and pre-
tend they don’t exist). The sandwich failure pattern
causes the m processors pi,...,pm with the lowest
ids and the m processors pam42,...;P3m+1 With the
highest ids to fail in the following way: each proces-
SOT Pt € {Pm+1,. .., D2m+1} receives messages only
from processors p;j, ..., Pam+;. Notice that each such
Processor pm.4; sees 2m + 1 active processors, and
sees its rank in this set of active processors as m + 1.
Notice also that the active processors after a round
of the sandwich failure pattern is always a consecu-
tive subsequence of processors from the middle of the
sequence of active processors at the beginning of the
round. Using this failure pattern, we can prove the
following:

Proposition 3: Given a system of n processors in
the same (initial) state, it is impossible to force these
processors into order-inequivalent states in fewer than
logs(n) rounds.

Proof: Notice that the sandwich failure pattern fails
roughly 2/3 of the active processors, leaving roughly
1/3 remaining active in the next round. We claim
that if £ < logg(n), then after £ rounds of the sand-
wich failure pattern the states s; and s; of processors
p; and p; are related by the order-preserving func-
tion ¢;_; defined by ¢x(p;) = piyx for 1 <i<n—k
when k£ > 0 and for £ + 1 < n when k& < 0; that is,
$j—i(si) = sj. We proceed by induction on £.

The result is immediate for £ = 0 since each p;’s
initial state is (p;,), and ¢;_i(pi, 8) = (¢;—i(p), s) =
(pj,s). For £ > 0, suppose the hypothesis is true for
£ — 1. Suppose there are 3m + 1 active processors at
the beginning of round ¢. (Again, we can immedi-
ately fail one or two processors with the lowest ids in
the next round and assume that this is true.) Since
the active processors at the beginning of round £ are
a consecutive subsequence of py, ..., p,, suppose they
are pgy1,-..,Pps. Notice that after another round of
the sandwich failure pattern, the active processors
are Pgtm-i,-..,Pb—m, and that state of processor

Pa+m+i is

(Pa+m+i (Pa+i 3a+i) (Pa+2m+i 3a+2m+i))

e~

and the state of processor p,im+; is

(Pa+m+j (Pa+j 3a+j) (Pa+2m+j 3a+2m+j))

It is easy to see that ¢;_; maps the state of psym s
t0 Patm+j, as desired.

Since the participating processors start a renam-
ing protocol in order equivalent states (their initial
states consist of their processor id, a 1 in their in-
put register, and nothing in their output register),
this proposition gives us the desired lower bound for
strong renaming:

Corollary 4: Any comparison-based protocol for strong

renaming requires (log; m) rounds of communica-
tion, where m is the number of participating proces-
Sors.

As shown in the previous section, this result yields
a Q(logs m) lower bound on a variety of decision prob-
lems and concurrent objects in the comparison model,
where m is the number of concurrent processors. It
is not known whether the same lower bound holds
also for models in which processor identifiers have a
richer structure. We now show that the technique of
showing that processor states can be forced to remain
order equivalent cannot be used to derive stronger
bounds. If operations of objects such as stacks or
queues require more than a logarithmic number of
rounds, then this lemma strongly suggests that the
additional cost cannot be an artifact of the compari-
son model, but is somehow inherent in the semantics
of the objects themselves.

Proposition 5: There exists a protocol that leaves
processors pi, . . ., P, in order-inequivalent states after
O(log n) rounds.

Proof: We give a simple comparison-based algorithm
in which processors choose distinct sequences of in-
tegers after a logarithmic number of rounds. In each
round, each processor broadcasts its identifier and the
sequence of integers constructed so far. Two proces-
sors collide in a round if they broadcast identical se-
quences. In round 1, processor p broadcasts (p) (and
hence all processors collide with the empty sequence).
Let (p 41 ... ix—1) be the message p broadcast at
round k — 1, and ¢; the number of processors less
than p that collide with p at round & — 1. In round
k, p broadcasts (p 71 ... ix). Each processor halts
when it does not collide with any other processor.
We claim that the set of processors that collide
with a particular processor must shrink by approxi-
mately half at each round, yielding an O(logn) run-
ning time. Two processors that broadcast different
sequences continue to do so, so the set of processors

that collide with p at round k is a subset of the pro-
cessor that collided with p at earlier rounds. Consider
a set of £ nonfaulty processors that collide at round
k, let p be the least processor in that set, and let ¢ be
the highest. Because ¢ must count at least £ colliding
processors with lower ids, and because p and ¢ col-
lide at round k, processor p must also see £ colliding
processors with lower ids. Since p is minimal, how-
ever, the processors it counts must have failed before
sending to g, hence at least 2/ — 1 processors collided
with p and ¢ in round k& — 1, and at least £ — 1 have
failed.]

6 Optimal Renaming

We note that the proof of the logm lower bound
for renaming depends on the fact that the renam-
ing problem requires two processors to do different
things, which is impossible in order-equivalent states
in the comparison model. The proof actually applies
to many other situations in which processors are re-
quired to behave in nontrivially different ways. Be-
cause this proof scheme does not make heavy use of
the semantics of the problems under consideration,
it seems possible that the logm lower bound is so
cheap that every decision problem or wait-free imple-
mentation requires significantly more time. In order
to show that this is a meaningful lower bound in the
comparison model, we now give a log m algorithm for
strong renaming.

The algorithm itself is given in Figure 1. The basic
idea is that if a processor p hears of 2° other partic-
ipating processors, then it chooses a b-bit name for
itself one bit at a time, starting with the high-order
bit and working down to the low-order bit. Every
round, p sends an interval I containing the names it
is willing to choose from. On the first round, when
the processor has not yet chosen any of the leading
bits in its name, it sends the entire interval [1,2%].
It sets its high-order bit to 0 if it finds it is in the
bottom half of the set of processors it hears from in-
terested in names from the interval [1,2%], and to 1
if it finds itself in the top half. In the first case it
sends the interval [1,25~!], and in the second it sends
[25=141,2%]. In order to make an accurate prediction
of the behavior of processors interested in names in
its interval I, however, it must wait until every pro-
cessor interested in names in 7 is interested only in
names in I before choosing its bit and splitting its in-
terval in half; that is, it must wait until its interval 7
is maximal among the intervals intersecting I. Con-
tinuing in this way, the processor chooses each bit in
its name, and continues broadcasting its name until
all processors have chosen their name.

D e £

define rank(s,S) = |{s' € §: s < s}
define bot(S) = {s € S : rank(s, S) < |5|/2}
define top(S) = S — bot(S5)
define bot(S, k) = {s' € S : rank(s',S) < 2°
where 1 < 2% < k < 2041}

broadcast p

P+ {p' : p' received}
m < [log |P]]

I« [1,2%

repeat
broadcast (p, I)
I+ {I':(p,TI') received and I NI' # ¢}
P+ {p:(,I) received and I NI' £ ¢}
if I' C I for every I' € T then
if p € bot(P, |I])
then I + bot(I)
else I « top(I)
until |I'| =1 for all I' € {I' : (p', I') received }

return a, where I = [a, a]

Figure 1: A logm renaming protocol A.

There are a few useful observations about the in-
tervals processors send during this algorithm. The
first is that if processor p sends the interval I during
round k, then Iy D Iy for all ¥’ > k. The second
is that each interval I; is of a very particular form,;
namely, every interval sent during an execution of A
is of the form [c27 + 1,c27 + 27] for some constant c.
This is easy to see since the first interval I; a proces-
sor sends is of the form [1,2%], and every succeeding
interval Iy is of the form top(Ij_1) or bot(Ix_1). We
say that an interval I is a well-formed interval if it
is of the form [c27 + 1,c27 + 27] for some constant c.
It is easy to see that any two well-formed intervals
are either distinct, or one is contained in the other.
Notice that every well-formed interval I is properly
contained in a unique minimal, well-formed interval
I > I. Furthermore, either I = top(f) or [= bot(f),
and it is the low-order bit of the constant ¢ that tells
us which is the case. We define the operator I that
maps a well-formed interval I to the unique minimal,
well-formed interval [properly containing I

In every round of the algorithm, a processor p
computes the set P of processors with intervals I’ in-
tersecting its current interval I. These processors in
P are the processors p is competing with for names
in I. When p sees that its interval I is a maximal in-
terval (that is, all intervals I’ received that intersect
I are actually contained in I), processor p adjusts its

set I to either bot(I) or top(I). Our first lemma es-
sentially says that when p replaces I with bot(I) or
top(I), there are enough names in I to assign a name
from I to every competing processor. Furthermore,
this lemma shows that when a processor’s interval re-
duces to a singleton set, then this processor no longer
has any competitors for that name.

Lemma 6: Suppose p sends interval I during round
k > 2. If P is the set of processors sending an interval
I' C I during round k, then |P| < |I].

Proof: We consider two cases: I = bot(f) and [=

top(l2).

First, suppose I = bot(f). Consider the greatest
processor ¢ (possibly p itself) in P. Processor ¢ sent
some interval J C I to p in round k, so consider the
first round £ < k that g sent some interval J C I to
any processor (and hence to p) in round £.

If £ = 2, then J is of the form [1,2%], where 2° is
an upper bound on the number of processors ¢ heard
from in round 1, and hence on the number of active
processors in round k, and therefore on |P|, the num-
ber of processors sending intervals contained in I in
round k. It follows that |P| < 2b = |J| < |1].

If £ > 2, then ¢ sent J C I in round 4, and ¢ sent
a larger interval J ¢ I in round £ — 1. In fact, we
must haveJ:Iandj:f,forifJCIthenng
and £ is not the first round that ¢ sent an interval
contained in I. Let P be the set of processors sending
an interval intersecting I to g in round £ — 1. Since
every processor p' € P sending an interval I' C T to
p in round k must also send an interval intersecting
I to ¢ in round £ — 1, each of these processors must
be contained in P, and hence P C P. Since g sent I
in round £ — 1 and I = bot(f) in round £, it must be
the case that g € bot(P, |I|) at the end of round £— 1.
Since P C P and since g is the greatest processor in
P, it must be the case that P C bot(P, |f|) It follows
that |P| < |I|/2 = ||, as desired.

Now, second, suppose I = top(f). The proof in

this case is similar to the proof when I = bot(f),
except that g is now taken to be the least processor
in P. [

Our second lemma shows that when a processor
p selects an interval I = [a, b], there are enough par-
ticipating processors to assign all names 1,...,a to
participating processors. In particular, when p’s in-
terval becomes the singleton set [a, a], then there are
at least a participating processors, and hence a is
valid name for p to choose. We say that a processor
holds an interval [a, b] during a round if [a,b] is its
interval at the beginning of the round, and hence the
the interval it sends during that round (if it sends any
interval at all).

A ven 7

Lemma 7: If] = [a, b] is a maximal interval sent by
any processor during round k, then there are at least
a—1 processors holding intervals [a’, b'] during round
k with b’ < a.

Proof: By induction on k.

Suppose k£ = 2, the first round processors send
any interval. Then I is of the form [1,2%], and it is
vacuously true that at least 0 processors hold intervals
[@’, V'] during round 2 with b’ < 1.

Suppose k > 2, and the induction hypothesis holds
for k' < k. Suppose I = bot(f). Since I is a maximal
interval sent in round k, either I or I is a maximal
interval sent in round k — 1. Since intervals I and |
have the same lower bound a, the induction hypoth-
esis for k — 1 says that there are at least ¢ — 1 pro-
cessors who hold intervals [a’, d’] during round &k — 1
with b’ < a. Since each of these processors holding an
interval [¢/, '] in round k& — 1 must hold an interval
[a", b"] contained in [a’, }'] in round k, it follows that
there are at least a — 1 processors holding intervals
[@",b"] in round k with b < V' < a.

Suppose I = top(f). Let p be the smallest proces-
sor ever sending I during the execution. If I is the
interval p sent in round 2, then we are done, using the
argument for the case of k¥ = 2. Suppose, therefore,
that I is not the interval sent by p in round 2. It
follows that p must have sent the interval I = [4, b]
in some round k' < k, and then sent the interval
I= top(f) in round k' + 1. Since p changed inter-
vals between round k' and k' + 1, the interval [must
have been a maximal interval in round %’, and hence
by the induction hypothesis at least ¢ — 1 processors
hold intervals [a', '] during round &’ with b’ < a. No-
tice also that since p changed its interval from I to
I = top(I), at least a — & = |I|/2 of the processors
p’ sending an interval to p that intersected I satisfied
p' < p. Furthermore, since I was a maximal interval,
each of these intersecting intervals I’ was contained
in I = [a, B], and hence each of these processors p’
sending an intersecting interval could not have been
one of the @ — 1 processors sending an interval [/, b']
in round k' with ¥ < a. Finally, since p is by as-
sumption the smallest processor sending I = top(f),
and since any processor p' < p sending an interval
contained in I must continue sending intervals con-
tained in f, each of these processors must eventually
send intervals contained in bot(I) = [4,a — 1]. Con-
sequently, when I finally becomes a maximal interval
(by round k at the latest), each of these processors is
holding an interval contained in bot(f), and so are at
least @ — 1+ (a — @) = a — 1 processors hold intervals
[@’, '] in that round with b’ < a. Since the interval
held by these processors in round k is contained in
the interval they hold in this round, the same is true

in round k. O

Finally, since the algorithm terminates when ev-
ery processor’s interval is a singleton set, and since
the size of the maximal interval sent during a round
decreases by a factor of 2 every round, it is easy
to prove that the algorithm A terminates in logm
rounds.

Lemima 8: The algorithm A terminates in log m+ 2
rounds, where m is the number of participating pro-
Cessors.

Proof: Consider an arbitrary execution of A. For
each round k, let Z; be the least upper bound on
the size of the intervals I sent during round k. In
round 2, each processor sends an interval of the form
[1,2°] where 2° is the least power of two greater than
the number of processors that processor heard from
in round 1. It follows that ky = 2° < 2m for some
m. For any round £ > 2, any processor p sending
an interval I of maximum size ky_; in round £ — 1
sends one of the intervals top(I) or bot(I) in round
£, since all (well-formed) intervals it receives in round
£ — 1 intersecting I are actually contained in I. It
follows that k;, = k;_1/2 for any round £ > 2, and
hence that kiogam)+1 < 2b/(2m) < 1. Thus, within
log(2m) + 1 = log(m) + 2 rounds, all intervals sent
are of size 1, and hence all processors terminate. []

With these results, we are done:

Theorem 9: The algorithm A solves the strong re-
naming problem, and terminates in log(m)+2 rounds,
where n is the number of participating processors.

Proof: First, all processors choose a name, since
Lemma 8 says that the algorithm terminates in log(m)+
2 rounds, where m is the number of participating pro-
Cessors.

Second, the names chosen by processors are dis-
tinct. Suppose two processors p and p’ chose the name
a at the end of rounds k and k' > k, respectively.
Processors p and p’ must have sent the singleton set
I = [a,a] to all processors in rounds & and k', and
intervals containing I in all preceding rounds. Since
p could not have terminated in round k unless all
intervals it received were singletons, both processors
must have sent I = [a, a] in round k, and this interval
must have been a maximal interval (all intervals were
singletons). It follows by Lemma 6 that 2 < |I| =1,
which is impossible.

Finally, names chosen are in the interval [1,m],
where m is the number of participating processors.
Consider the processor p choosing the highest name a
chosen by any processor, and consider the last round
k in which p send the singleton set I = [a,a]. The

TDaAavenr O

suggestion(e, £, R)
winner|[] < a vector of maz-entry
for each (¢/,a', ¢, E') € R
winner[a'] + min{winner[a'], e’}
for each (¢/,a', ¢, E') € R
if winner[a’] = €' then value[e'] « a'
for each (¢/,a',#', E') € R by increasing e’
if e’ ¢ winner then
value[e'] « min{b > £: b & value}
return valuele]

increment()
wait for an even round k, then
L+ |{e' € E : gen(e') < k}|
e+ {k,p)
E + EU{e}
broadcast (e,£+ 1,4, E)
receive (e',a', ¢, E')
repeat
E + union of the E' received
R« {(¢',d',¢,E") : (¢',a', ¢, E)
received and gen(e') = k}
£+ min{¢ : (¢',d',¢, E') € R}
a + suggestion(e, £, R)
broadcast (e, a,¢, E)
receive (€¢/,a', ', E')
until generation k suggestions don’t change
return a

Figure 2: An increment register algorithm R.

interval I must have been a maximal interval in round
k, or p would have sent I in round k + 1 as well. It
follows by Lemma 7 that at least a— 1 processors hold
intervals [a’, b'] with b’ < a in round k, and hence that
a is at most the number m of participating processors.

a

7 A Wait-free Increment
Register

In this section, we show how a particular strong re-
naming algorithm can be transformed into a wait-free
implementation of an increment register. Our im-
plementation has the property that each invocation
of the increment operation terminates in O(c%‘l'e)
rounds, where ¢ is the number of processors invoking
the operation in the same round and ¢ is any positive
real value.

The increment register algorithm R appears in
Figure 2. The basic idea behind this algorithm is that
every participating processor p repeatedly computes

a value @ and suggests to the rest of the processors
that it be allowed to return this value a. Processor p
makes this suggestion by broadcasting a to the other
processors. It then collects all suggestions broadcast
to it and looks to see how many other processors have
suggested a for themselves, too. If p sees that it is
the least processor suggesting a, then p chooses a for
itself (we say that p is the winner). Otherwise, p
recomputes a new value and tries again. In this sense,
the protocol is similar to the uniqueness renaming
protocol in [2].

One subtle aspect of this protocol is the way in
which processors compute their suggestions. Every
processor maintains a lower bound /, and takes care
that the value it suggests for itself is always above
this lower bound. In addition to broadcasting its sug-
gestion, it broadcasts its lower bound, and resets its
lower bound to be the minimum of the lower bounds
received from concurrent processors. The need for es-
tablishing a lower bound is to ensure linearizability;
the need to repeatedly lower the lower bound is to
ensure a reasonable time complexity. To compute its
preference, a processor p first computes the winners
for the various values using the suggestions it has re-
ceived, and assigns these values to the winners. For
the remaining processors, p assigns values to them one
by one in increasing processor order by assigning to
g the least unassigned value above p’s lower bound Z£.
(We write b ¢ value to denote that b does not appear
in the vector value.) The name it assigns to itself is
its suggestion for the next round. We note that once
a processor wins the value a, it will win the value a
in every later round, but it must protect its victory
by continuing to participate in the protocol until all
other concurrent processors have successfully chosen
a value for themselves, too.

Because a processor can invoke the increment op-
eration on several different rounds, invocations are
tagged with both the invoking processor’s id and the
round in which the operation was invoked. This tag
is called an entry, which is a pair (k,p) consisting of
a round number k and a processor id p. Entries are
ordered lexicographically by round number and pro-
cessor id, although a distinguished value maz-entry
is considered greater than every other entry. We say
that the generation of the entry (k,p) is k. We write
gen({k,p)) = k, and refer to p as a generation k pro-
cessor. We also refer to an invocation tagged with
(k,p) as an invocation by p, or as a generation k in-
vocation.

Every processor maintains a set E containing all
entries of which it has ever heard (initially, F is empty).
It broadcasts this set’ every round, and merges the

1In practice, it need only broadcast the additions to E since

e O

sets it receives by taking their union. (By conven-
tion, a processor always sends to itself.) One impor-
tant point not apparent in Figure 2 is that even if a
processor p is not currently invoking the increment
operation, it must eavesdrop on broadcasts by other
processors p' who are invoking the increment opera-
tion and merge the sets E’ they send with its own.
This is necessary in order for p to have enough in-
formation to be able to invoke the operation itself at
some later time. In particular, p initially sets its lower
bound to the number of entries it has heard of from
earlier generations, so F must be kept up to date.
We note that invocations of the increment operation
always begin on even rounds in order that earlier gen-
erations have enough time to relay all relevant entries
seen to later generations before the later generations
begin.

7.1 Correctness

The intuition behind a processor’s setting its lower
bound / to the number of processors from previous
generations is that there are already enough proces-
sors to account for the values 1 through £. The cor-
rectness of the algorithm (in particular, linearizabil-
ity) depends primarily on the fact that the lower
bound is high enough to guarantee that processors
from earlier generations never suggest (or choose) val-
ues above this lower bound. The following result
shows this is true for the initially computed lower

bound.

Lemma 10: If £ is the initial lower bound computed
by a generation k processor, then every generation
k' < k processor surviving its second round suggests
only values a < Z.

Proof: Suppose £ = £, is the initial lower bound
computed by a generation k processor p, and suppose
E, is the set of entries p used to compute £,. Consider
any generation k' < k processor g surviving its second
round, and let £, be its initial lower bound, computed
using F,. Let [and u be the number of entries e’ €
E, with gen(e’) < k' and gen(e') < k', respectively.
Since ¢ survived its second round, it sent E, to p at
the end of its first round, so £; C E,, and hence
£ <l <u<y,.

Suppose g suggested the name £, + i during its
round 7 > 2, where Z; < £, is its lower bound during
its jth round. Then ¢ heard from at least i generation
k' processors in its jth round, so it heard from at
least 7 such processors in its first round, at which
point it added these processors to its set F, and sent
them to p in its second round. It follows that these

its last broadcast.

1 processors are contained in Ej,, so the difference
u — [must be at least ¢, and hence Z; +i1< 4 +i<
I +1<u< ¥, Thus, q suggests only values a < £,
as desired. [

The next result shows that the successive lowering
of lower bounds is a safe thing to do.

Lemma 11: If £ is any (not necessarily initial) lower
bound held by a generation k processor, then every
nonfaulty generation k' < k processor suggests only
values a < £.

Proof: Let 4y, . .., ¢4 be the initial lower bounds com-
puted by the generation k processors py,...,pq. Let
g be a nonfaulty generation k' < k processor. Since g
survived its second round, Lemma 10 says that g sug-
gests only names a < /; for every %, and thus a < £y,
where £, = min{/4;,...,£43}. Since £ was computed
by repeatedly taking the min of lower bounds from
processors of the same generation, it is the result of
taking the min of some subset of 41, ...,£;. Thus, we
have £ > £in, and hence a < £ as desired. l

We have mentioned that our implementation of
an increment register is a transformation of a simple
strong renaming algorithm. The next result shows
that this implementation can still be viewed as a
strong renaming protocol.

Theorem 12: R solves the strong renaming prob-
lem.

Proof: First, notice that a nonfaulty processor p
with entry e eventually chooses a value. Since only
processors with lower entries from the same gener-
ation can keep p from committing on a value, and
since the processor with the lowest entry from that
generation in a given round either fails or commits,
the number of processors that can keep p from com-
mitting decreases by at least one every round until p
finally chooses a value.

Second, notice that no two nonfaulty processors
choose the same value. Suppose to the contrary that p
and g both choose a. Since processors always suggest
names above their current lower bound, Lemma 11
implies that processors p and ¢ must be from the
same generation. Furthermore, p and ¢ must have
suggested a in the same round, or the later proces-
sor would have seen the earlier processor’s suggestion
and not suggested a for itself. If p and g suggest a in
the same round, however, the larger will observe the
smaller and will not choose a.

Finally, notice that if a processor p suggests a
(and, in particular, chooses a), then there exist at
least a processors; and hence that every processor
chooses a value from the set {1,...,m}, where m is

Dav~r 10

the number of participating processors. To see this,
let £, be the lower bound computed by p using E,,
and suppose p has suggested the value £+ in its jth
round, where £ < £, is its lower bound during its jth
round. Then p’s set E, contained £, > £ processors
from earlier generations, and p heard from 7 proces-
sors from its own generation in its j — 1lst round, so
there are at least £+ 2 processors. H

The desired result, however, is an implementation
of an increment register:

Theorem 13: R is a linearizable, wait-free imple-
mentation of an increment register.

Proof: The proof of Theorem 12 shows that R is an
implementation of an increment register: distinct in-
vocations of the increment operation return distinct
values, and each value less than any value returned
is “accounted for” by other invocations, perhaps ones
that have halted. To show linearizability, we must
show that operations appear to take effect in “real-
time” order: if one operation begins after another has
finished, then the former returns a larger value. But
this is obvious, since Lemma 11 implies that invoca-
tions by processors from one generation always return
higher values than invocations by nonfaulty proces-
sors from previous generations. Cl

7.2 Time Complexity

We now analyze the running time of an invocation of
the increment operation. For the rest of this section,
fix a processor p invoking the increment operation in
round r (generation 7). Define the concurrency set
to be the number of other processors invoking the
increment operation in the same round, and let ¢ be
the size of this set. All processors and invocations will
be of generation r unless explicitly stated otherwise.

A processor is committed at time k if it is a winner
at time k (that is, if it can choose its suggested value),
and we say that it has been bounced (by a lower pro-
cessor) if it is not. A processor is active at time k if
it has not committed at time & (it has bounced) and
sends at least one message in round k& + 1. An active
processor’s suggestion at time k is the suggestion it
sends in round k 4+ 1. A collision at time k is a set
of active processors with the same suggestion at time
k. Notice that at most one nonfaulty processor in
a collision at time &k will be able to commit at time
k + 1. Our analysis is based on discovering the most
efficient way of maintaining large collision sets, and
hence of keeping processors uncommitted.

We note that using a failure pattern somewhat
similar to the sandwich failure pattern, it is possi-
ble to keep an invocation of the increment operation

started at time O running for roughly +/c rounds. At
time 0, a processor’s lower bound is necessarily 0, so
the failure pattern’s strategy is to keep processors un-
certain about the number of lower processors starting
at time 0.

In general, though, differences in the lower bounds
held by various processors can also cause large col-
lisions. These differences are initially the result of
failures by processors in very early generations, but
we want the complexity of the algorithm to depend
only on failures within the current generation. It
is for this reason that processors adjust their lower
bounds every round by taking the min of the lower
bounds received from processors in their own gen-
eration. Now disagreement about the lower bounds
must be the result of a failure in the current genera-
tion. Of course, now collisions can occur if processors
change their lower bounds at unexpected times, and
analyzing collisions when this happens is quite dif-
ficult. Fortunately, the following result shows that
a processor’s lower bound cannot change too many
times.

Lemma 14: Processor p’s lower bound can change
at most 24/c times.

Proof: Consider the lower bounds £; > £y .-+ > 44,
and suppose that p’s lower bound is lowered to £; for
the first time after its k;th round, for j =1,...,d.

It is clear that for each £; there must be a se-
quence o; = ¢j,1,.-.,9j,k; of processors of p’s gen-
eration such that (i) g 1’s initial lower bound is ¢;,
(ii) every g;,; sent to gj;+1 in round % but failed to
send to p, and (iii) ¢; &, finally sent to p in round k;.
This is because £; must be the initial lower bound
of some processor, and because p would have learned
about £; and hence lowered its lower bound to £; be-
fore the end of its k;jth round if any g;; with 7 < k;
had not failed to send to p. Furthermore, no proces-
sor can appear in two sequences o; and o;:, with the
possible exception that the final processor in the two
sequences may be the same. To see this, suppose to
the contrary that g;; = ¢ = g;1;+ where 2 < k; and
i < kjr. Suppose further that ¢£; > £;:, which implies
that k; < k;». We must have ¢ = ¢’ since ¢ cannot fail
to p in two separate rounds. Since ¢’s lower bound in
this round is necessarily £;; = min{¢;,¢;:}, processor
p learns about this lower bound after round k; and
sets its lower bound to £;; < £; after round k; < kjr,
a contradiction.

It follows that the number of distinct processors
of the form g;; must be at least

(by— 1)+ (k2 — 1) + - + (ka — 1)
> 0+---+(d—1) > d?/4.

Davenr 11

Since these processors are of p’s generation, and since
there are c such processors, we have d?/4 < c and

hence d < 24/c. U

Even though analyzing the number of active pro-
cessors remaining after a round in which p’s lower
bound changes is difficult, Lemma 14 says that we can
essentially ignore these rounds since p’s lower bound
changes only 24/c times. Since the adversary schedul-
ing processor failures is trying to keep as many pro-
cessors active as possible, giving the adversary the
benefit of the doubt, we can assume that the number
of active processors does not decrease at all during
such around, knowing that the resulting running time
will be at most 24/c longer than the actual running
time.

With this motivation, we now construct a function
Ale, f1,-- -, fx) giving an upper bound on the number
of processors active after k rounds in which p’s lower
bound remains steady and f; processors fail in the sth
such round. Since this function is an upper bound on
the number of active processors, if its value is less
than 1, then all processors have terminated within
the first & rounds. We then use calculus to show
that this function is maximized by taking fi,..., fk
to be roughly /c — 1,...,4/c — k, and yet the value
of the function is still less than 1 when & is roughly
4/c. Consequently, regardless of how many processors
fail in each round, all invocations terminate within
roughly +/c rounds.

We say that round k is a good round for p if p has
the same lower bound ¢ at times k — 2, k — 1, k, and
k41, and a bad round otherwise. We define good and
bad rounds only for rounds of the form k = 4:. Since
p broadcasts its lower bound £ in round k—1, everyone
has a lower bound of at most £ at time £ — 1. Some
set By of “bad” processors may have lower bounds
different from £ at time k& — 1, but they do not send
to p in round k and hence must fail. Some set B} of
processors who do not fail in round k may hear from
processors in By in round k, and hence have lower
bounds different from £ at time k, but they do not
send to pin round %k + 1 and hence must also fail. Let
the set G of “good” processors be the complement of
B, in the set of processors surviving to time k. Notice
that G and Bj, partition the processors surviving to
time k into two sets, those who receive only £ as lower
bounds from other processors, and those who do not.

As the following result shows, the adversary must
fail a large number of processors in order to construct
large collisions in good rounds.

Lemma 15: Suppose k is a good round for p. If f
processors fail round in k, then collisions at time k
contain at most f + 1 processors from Gg.

Proof: Suppose C is a collision at time k in an execu-
tion e containing f 4 2 processors from Gj. Consider
the execution g differing from e only in that every pro-
cessor sending a message to at least one processor in
Gy in round k of e sends messages to every processor
in round k of g. (Notice that this does not change the
messages processors in By send, and hence does not
change the lower bounds processors in Gy, receive.)
Since each processor ¢ € Gy in the collision C is (by
definition) uncommitted at time k in e, it has heard
from a smaller processor in round k with the same
time k — 1 suggestion. Since the same must be true
of round k in g where every processor receives even
more messages, ¢ is uncommitted at time &k in g and
computes a time k suggestion. In fact, since every
processor g € Gy, receives the same set of messages at
time k in g, they compute the same vector w as the
value of the vector winner, and compute unique (!)
suggestions for themselves.

Given a general vector w' computed as the value
of winner, define a hole in w' to be a name a such that
w'[a] does not contain an entry. Given two values a
and b, define the distance between a and b in w' to
be the number of holes between @ and b in w’. Given
two such vectors w' and w', we say w' is a subvector
of w' they agree on nonempty positions in w’. Notice
that the distance between @ and b in w' is at most
the distance in the subvector w’.

We now consider an arbitrary processor ¢ € G in
the collision C, and follow the movement of its sug-
gestion as we move through a sequence of executions
from g back to e, failing one by one each of the pro-
Cessors pi,...,pq that fail in round k of e. Let g; be
the run differing from g only in that pq,..., p; send
in round k of g; precisely as they do in round % of e.
We claim that if a; and a are ¢’s suggestions at time
k in g; and g, then a; < @ and the distance between
them in w is at most 7. We proceed by induction on
1. Since the case of 4 = 0 is vacuously true (go = g),
suppose % > 0 and the claim is true for ¢ — 1. Let w;
be the vector winner computed by ¢ at time k in g;,
and notice that it is a subvector of w.

If w; = w;_1, then the only difference in ¢’s com-
putation of its suggestions a; and a;_; is that ¢ may
not have to compute a suggestion for p; before com-
puting its suggestion a; in g;. Since every processor
that ¢ € Gy hears from has the same lower bound,
and since w; = w;_1, this means that a; will be no
higher than a;_1, and that the distance between them
in w; is at most 1.

If w; # w;_1, then the only difference between the
two vectors is that p;’s time k — 1 suggestion b is now
a hole in w;. Let b* and b, be the holes in w; (and
hence in w;_1) just above and below b, respectively.
Again, the only difference in ¢’s computation of its

Davn~r 19

suggestions a; and a;_; is that ¢ does not have to
compute a suggestion for p; before computing a; in
g; for itself. Again, a; will be no higher than a;_1,
and that the distance between them in w; is at most
1. Notice, however, that a; may fall only from b* to
b in w; instead of all the way down to b, as it would
n w;_i.

In either case, a; < a;_1 < a. Furthermore, the
distance between a and a;_; is at most ¢ — 1 in w,
and the distance between a; and a;_; is at most 1 in
w; (and hence in w since w; is a subvector of w), so
the distance between a and a; in w is at most 3.

Thus, ¢’s suggestion in g falls to its suggestion in
e, moving distance at most one in w with the failure
of each processor. Since processors ¢ € G in C have
distinct suggestions a4 in ¢ and the same suggestion
a < a4 in e, and since there are f 4 2 processors from
G in C, some processor ¢ € G in C must have to
move down at least f+1 holes in w from its suggestion
in g to its suggestion in e. This means that at least
f + 1 processors must fail in round %, contradicting
the fact that only f processors fail. |

Notice that a set of failing processors can cause
the greatest number of processors to remain active
by creating as few collisions as possible, since at most
one processor in every collision will be able to commit.

Define (c—)3f
D= Gy

We have the following:

Lemma 16: Suppose k is a good round for p. If ¢
processors are active at time k — 1 and f processors
fail in round k, then the number of active processors
at time k + 1 is at most A(c, f).

Proof: Notice that By is some subset of the f pro-
cessors failing in round & (since p does not hear from
them at time k). Furthermore, Gi U Bj, is the set of
¢ — f processors surviving to time k, and all proces-
sors in Bj, fail in round & + 1 (since p does not hear
from them at time &k + 1).

Suppose |Gi| < (c— f)/2. Then |B;| > (c— f)/2,
and since every processor in Bj has failed by time
k + 1, the number of active processors at time k + 1
is at most

' (c=f) _ (=)
(c=N=IBil < (c-H-F="5
(c=1)3f _
S Grey CAGS)

On the other hand, suppose |Gi| > (¢ — f)/2.
Some processors in Gy commit at time k, and the
rest bounce. Let m. and m; be the number of pro-
cessors in Gy, that commit and bounce, respectively.

By Lemma 15, no time k collision contains more than
f + 1 processors from Gy, so there must be at least
mp/(f + 1) time k collisions. Since the lowest pro-
cessor in every collision is guaranteed either to fail or
to commit by time & + 1, at least my/(f + 1) of the
bouncing processors are no longer active at time k+1.
Since the same is clearly true for the m, processors
in Gy committing at time k, at least

mp mp + me |G| (c— 1)
Ty T me > = >
(f+1) (F+1) (F+1) 7 20f+1)
processors in Gy are no longer active at time &k 4+ 1.
It follows that there are at most

(c— 1) (c—f) _
(C—f)—m <(e—f)- W—A(C,f)
active processors at time k + 1.]

Since the concurrency set has size ¢, the number
of active processors at the beginning of the first good
round is ¢; < ¢. Lemma 16 says that A(cq, f1) is an
upper bound on the number of active processors af-
ter this first good round if f; processors fail in this
round, and hence so in A(c, f1) since A(c, f) is mono-
tonic in c¢. Similarly, it is easy to see that at most
A(Al(e, f1), f2) processors are active after two good
rounds in which f; fail in the first and f5 in the sec-
ond. Continuing in this way, if we define

A(C, fla"'afk) = A(A(C, fl)af2a"'fk)a

then Lemma 16 and a simple argument by induction
on k yields:

Lemma 17: If f; processors fail in the :th good round
for p, then the number of processors active after k
good rounds is at most A(e, fi,..., f).

We note that
Lemma 18: A(c, f1,..., f) is monotonic in c.

The following result tells us that in order to keep
the greatest number of processors active, we need only
fail .

a(e) = 3 (Ve 1-1)
processors in a round with ¢ active processors. Notice,
by the way, that A(c, a(c)) = 3a(c)?.

Lemma 19: For a fixed ¢, the value of A(c, f) is
maximized when f = a(c).

Proof: The function

B_A(c f) = (Bf +1)(3¢c—6f) —9(cf — £?)
of " (3f +1)?

Davnr 19

has a single positive root at a(c). Cl

Intuitively, therefore, failing a(c) processors every
round is the best strategy the adversary has for keep-
ing R from terminating. To make this precise, define

Ai(c) = Alc, alc))
Ag(c) = Ar_1(41(c))

Informally, Ag(c) is an upper bound on the num-
ber of active processors after following this strategy
for k good rounds starting with ¢ active processors.
The following shows that the strategy of failing a(c)
processors every round is indeed the adversary’s best
strategy:

Lemma 20: Ag(c)is the maximal value of A(c, f1, f2,

Proof: By induction on k. For & = 1, Lemma 19
implies A;(c) = A(c,a(c)) is the maximal value of
A(c, f1). For k > 1, assume the statement is true
for k — 1. Since A(c, f1) < Ai(c), and since Lemma
18 implies that A(c, f2, ..., fx) is monotonic in ¢, we
have

A(C, flaf2a"'fk)

A(A(C, fl)a f2a .. 'afk)
S A(Al(c)’f2a"'afk)-

Finally, the induction hypothesis implies that

A(A1(e), far - fi) < Ar_1(Ax(e)) = Ai(e)
O

Since Ag(c) is the upper bound on the number of
active processors after & good rounds, we can prove
the following lemma showing that bounding the run-
ning time of an invocation with concurrency set of
size ¢ reduces to finding the least value of k& for which
Ap (C) < 1.

Lemma 21: If 4x(c) < 1, then any invocation with
concurrency set of size ¢ terminates within k& good
rounds.

Proof: Consider any invocation in which f; proces-
sors fail in the ith good round, 2+ = 1,..., k. The
protocol terminates when the number of active pro-
cessors falls below one. A(ec, f1,...fx) is an upper
bound for the number of active processors at the end
of the kth good round by Lemma 17, and Ag(c) is an
upper bound for A(c, f1,..., fx) by Lemma 20. [

The next three lemmas are simply technical re-
sults needed to help us find this least such k.

Lemma 22: For 0 > a > 1,

: O(_ _ o
CIHEOC (e—1)*=0.

Proof: Let f(c) = c®. The derivative f'(c) = ac*~?!
approaches zero for large ¢ because o < 1. By the
Mean Value Theorem of Calculus, there exists an z.
between each ¢ — 1 and ¢ such that

f'(me) = f(e) = fle = 1)

Since the left-hand side limits to zero, so does the

right-hand side. [

For the remainder of this section, let f(c) = ¢?~¢.

Lemma 23: For sufficiently large c,

2
fe) <fle=1)+ =V fle—1)

... fProof: Let a = (2 —¢€)/2.

fle) = fle—=1)=c** — (c—1)**
The last expression is equivalent to:
(e — (e — 1)[e + (¢ — 1)°]
By Lemma 22,

. a _ o
cli)n;oc (e—1*=0.

In particular, there exists a C such that ¢*—(c—1)* <
1/(4\/5) for ¢ > C. Also,
lim ¢® + (¢ — 1)* = 2(c — 1)7,

c— 00

so there exists a C' such that c*+(c—1)* < 4(c—1)*
for ¢ > C'. For ¢ > max(C, C"),

[¢* = (e = 1)*][e* + (¢ - 1)?] <

1
V3
2
< %\/ f(C— 1).

Lemma 24: A(f(c)) < f(c—1) for sufficiently large c.

Proof: From Lemma 23,

3f(e) <3f(c—1)+2+/3f(c—1).

Completing the square by adding one to each side,

3f(c) +1 < (4/3f(c— 1)+ 1)2.

Taking the square root,

V3f(e) +1</3f(c—1)+1.

Subtracting one from each side,

V3f(e) +1— 1< /3f(c—1),

and squaring,

(V3f(e) +1-1)* <3f(c— 1),
we have
A(f(e)) < fle—1)
since A(c) = 3a(c)?. |

Lemma 25: Ax(f(k)) < 1 for sufficiently large k.

Proof: By induction on k. For k = 1,

1
A1) = 4(1) =3a(1) = S(VI-1)? <1
For k > 1, assume the result for £k — 1. By Lemma

24, and because Aj_; is monotonic:

A(f(k)) < Ax-1(f(k —1)).

The right-hand side is less than or equal to 1 by the
induction hypothesis. l

Theorem 26: Fix ¢ > 0. Any invocation of the
increment operation with a concurrency set of size
c terminates within O(c%‘l'f) rounds.

Proof: Given ¢ > 0 and sufficiently large ¢, Lemma 25
and the monotonicity of Ag(c) imply that if ¢ <
f(k) = k=<, then Ax(c) < Ax(f(k)) < 1. Lemma 21

therefore implies that the invocation halts in et/ (=€) —

c3te good rounds. Since p’s lower bound can change
at most 24/c times, and since good and bad rounds
are defined only for rounds of the form k& = 41, the
required number of good rounds must occur within

4(0%"'5 +24/c) = O(c%‘l'e) rounds. 1

8 Conclusions

This paper represents a first step in exploring the
complexity hierarchy of wait-free concurrent objects
in message-passing systems. It was previously known
that any object (or decision problem) can be imple-
mented in O(n) rounds using atomic broadcast, where
n is the degree of replication. Little was known, how-
ever, about whether there exist nontrivial objects or
decision problems that can be implemented more ef-
ficiently. In this paper, we identify two simple but
nontrivial examples: strong renaming is a decision
problem that can be solved in time logarithmic in
the number of active participants, and an increment
register is an object that can be implemented in time
approximately the square root of the number of con-
current operations. These results demonstrate that
algorithms that exploit the semantics of the problem
can sometimes be substantially more efficient than

general-purpose algorithms. We believe that the fun-
damental open problem in understanding synchronous
message-passing systems is to elucidate the nature of
this complexity hierarchy.

The first step to understanding the complexity hi-
erarchy is to establish lower bounds. We have pro-
posed a general and effective technique for deriving
type-specific lower bounds for concurrent objects: re-
duction to a decision problem. In this paper, we es-
tablish a lower bound on strong renaming, and we
use this lower bound to derive lower bounds for incre-
ment registers, ordered sets, and related data types.
Reduction to a decision problem is an effective tech-
nique because concurrent objects are hard to analyze
directly. Unlike decision problems, in which proces-
sors start simultaneously, compute for a while, and
halt with their outputs, concurrent objects have un-
bounded lifetimes during which they must handle an
arbitrary number of operations, these operations can
be invoked at any time, and the order in which opera-
tions are invoked is often important. It is an interest-
ing open question to identify other decision problems
of complexity intermediate between strong renaming
and consensus that also yield lower bounds for wait-
free concurrent objects.

Upper bounds have proven more difficult than lower
bounds. Our approach here has been to try to convert
solutions to decision problems into implementations
of long-lived objects. For example, the increment reg-
ister implementation given in Section 7 is based on a
simple O(m? ") strong renaming algorithm. The re-
sulting O(c%‘l'e) implementation is substantially more
efficient than an O(n) general-purpose algorithm us-
ing atomic broadcast, especially since the degree of
concurrency c itself is typically much less than n, the
total number of processors. On the other hand, this
implementation is also substantially less efficient than
the log ¢ lower bound implied by the reduction to re-
naming. Our attempts to adapt the logm renam-
ing algorithm were unsuccessful, primarily because
we were unable to achieve linearizability — despite
our best efforts, a later operation could sometimes
return a lower value than an earlier operation. We
leave as open questions the problem of establishing
better upper bounds for increment registers, stacks,
queues, and related objects.

Acknowledgements We thank Margaret Tuttle for
her comments on our proofs and presentation.

References

[1] H. Attiya, A. Bar-Noy, D. Dolev, D. Koller, D. Pe-

leg, and R. Reischuk. Achievable cases in an asyn-

Do~ 1

[10]

[11]

[12]

[13]

[14]

chronous environment. In Proceedings of the 28th
IEEE Symposium on Foundations of Computer Sci-

ence, pages 337-346, October 1987.
H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and

R. Reischuk. Renaming in an asynchronous envi-
ronment. Journal of the ACM, July 1990.

J.E. Burns and N.A. Lynch. The Byzantine firing
squad problem. Advances in Computing Research:
Parallel and Distributed Computing, 4:147-161,
1987. Available as Technical Report MIT/LCS/TM-
275, MIT Laboratory for Computer Science.

J.E. Burns and G.L. Peterson. The ambiguity of
choosing. In Proceedings of the 8" Annual ACM
Symposium on Princples of Distributed Computing,
pages 145-158, Edmonton, Alberta, August 1989.

B. Coan, D. Dolev, C. Dwork, and L. Stockmeyer.
The distributed firing squad problem. In Proceedings
of the 17th ACM Symposium on Theory of Comput-
ing, pages 335-345, May 1985. Available as IBM
Research Report RJ 5343, 1986.

D. Dolev, C. Dwork, and L. Stockmeyer. On the
minimal synchrony needed for distributed consensus.
Journal of the ACM, 34(1):77-97, January 1987.

D. Dolev and H.R. Strong. Polynomial algorithms
for multiple processor agreement. In Proc. 14th ACM
Symp. on Theory of Computing, pages 401-407, May
1982.

C. Dwork, N.A. Lynch, and L. Stockmeyer. Consen-
sus in the presence of partial synchrony. Journal of
the ACM, 35(2):288-323, April 1988.

C. Dwork and Y. Moses. Knowledge and common
knowledge in a Byzantine environment I: crash fail-
ures (extended abstract). In Joseph Y. Halpern, ed-
itor, Theoretical Aspects of Reasoning about Knowl-
edge: Proceedings of the 1986 Conference, pages 149—
170. Morgan Kaufmann, 1986. To appear in Informa-
tion and Computation. Also available as MIT Tech-
nical Memo MIT/LCS/TM-300.

M. Fischer, N.A. Lynch, and M.S. Paterson. Impossi-
bility of distributed commit with one faulty process.

Journal of the ACM, 32(2), April 1985.
M.J. Fischer and N.A. Lynch. A lower bound for the

time to assure interactive consistency. Information
Processing Letters, 14(4):183-186, June 1982.

G.N. Frederickson and N.A. Lynch. Electing a leader
in a synchronous ring. Journal of the ACM, 34(1):98-
115, January 1987.

M.P. Herlihy. A quorum-consensus replication
method for abstract data types. ACM Transactions
on Computer Systems, 4(1), February 1986.

M.P. Herlihy. Impossibility and universality re-
sults for wait-free synchronization. In Seventh ACM
SIGACT-SIGOPS Symposium on Principles of Dis-
tributed Computing (PODC), August 1988.

[15]

[16]

[17]

18]

[19]

[20]

(21]

(22]

(23]

(24]

M.P. Herlihy and J.M. Wing. Axioms for concurrent
objects. In 14th ACM Symposium on Principles of
Programming Languages, pages 13—-26, January 1987.

C.P. Kruskal, L. Rudolph, and M. Snir. Efficient syn-
chronization on multiprocessors with shared mem-
ory. In Fifth ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, August 1986.

L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the
ACM, 21(7):558-565, July 1978.

L. Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. [EEE
Transactions on Computers, C-28(9):690, September
1979.

L. Lamport. The part-time parliament. Technical
Report 49, Digital Equipment Corporation, Systems

Research Center, September 1989.

C.H. Papadimitriou. The serializability of concurrent
database updates. Journal of the ACM, 26(4):631-
653, October 1979.

M. Pease, R. Shostak, and L. Lamport. Reaching
agreement in the presence of faults. Journal of the
ACM, 27(2):228-234, 1980.

F.B. Schneider. Implementing fault-tolerant services
using the state machine approach: a tutorial. Techni-
cal report, Cornell Computer Science Dept., Novem-
ber 1987.

E. Styer and G.L. Peterson. Tight bounds for shared
memory symetric mutual exclusion problems. In Pro-
ceedings of the 8th Annual ACM Symposium on Prin-
ciples of Distributed Computing, pages 177-192, Au-
gust 1989.

M.R. Tuttle. Knowledge and Distributed Computa-
tion. PhD thesis, M.I.T., 1989.

D~ 10

