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Abstract

We prove tight bounds on the time needed to solve k-set agreement. In this prob-
lem, each processor starts with an arbitrary input value taken from a fixed set, and halts
after choosing an output value. In every execution, at most k distinct output values may
be chosen, and every processor’s output value must be some processor’s input value.
We analyze this problem in a synchronous, message-passing model where processors
fail by crashing. We prove a lower bound of bf�kc� � rounds of communication for
solutions to k-set agreement that tolerate f failures, and we exhibit a protocol proving
the matching upper bound. This result shows that there is an inherent tradeoff between
the running time, the degree of coordination required, and the number of faults toler-
ated, even in idealized models like the synchronous model. The proof of this result
is interesting because it is the first to apply topological techniques to the synchronous
model.
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1 Introduction

Most interesting problems in concurrent and distributed computing require processors
to coordinate their actions in some way. It can also be important for protocols solv-
ing these problems to tolerate processor failures, and to execute quickly. Ideally, one
would like to optimize all three properties—degree of coordination, fault-tolerance,
and efficiency—but in practice, of course, it is usually necessary to make tradeoffs
among them. In this paper, we give a precise characterization of the tradeoffs required
by studying a family of basic coordination problems called k-set agreement.

In k-set agreement [Cha91], each processor starts with an arbitrary input value and
halts after choosing an output value. These output values must satisfy two conditions:
each output value must be some processor’s input value, and the set of output val-
ues chosen must contain at most k distinct values. The first condition rules out trivial
solutions in which a single value is hard-wired into the protocol and chosen by all
processors in all executions, and the second condition requires that the processors co-
ordinate their choices to some degree. This problem is interesting because it defines
a family of coordination problems of increasing difficulty. At one extreme, if n is the
number of processors in the system, then n-set agreement is trivial: each processor
simply chooses its own input value. At the other extreme, �-set agreement requires that
all processors choose the same output value, a problem equivalent to the consensus
problem [LSP82, PSL80, FL82, FLP85, Dol82, Fis83]. Consensus is well-known to
be the “hardest” problem, in the sense that all other decision problems can be reduced
to it. Consensus arises in applications as diverse as on-board aircraft control [W�78],
database transaction commit [BHG87], and concurrent object design [Her91]. Between
these extremes, as we vary the value of k from n to �, we gradually increase the degree
of processor coordination required.

We consider this family of problems in a synchronous, message-passing model with
crash failures. In this model, n processors communicate by sending messages over a
completely connected network. Computation in this model proceeds in a sequence
of rounds. In each round, processors send messages to other processors, then receive
messages sent to them in the same round, and then perform some local computation
and change state. This means that all processors take steps at the same rate, and that
all messages take the same amount of time to be delivered. Communication is reliable,
but up to f processors can fail by stopping in the middle of the protocol.

The primary contribution of this paper is a lower bound on the amount of time
required to solve k-set agreement, together with a protocol for k-set agreement that
proves a matching upper bound. Specifically, we prove that any protocol solving k-
set agreement in this model and tolerating f failures requires bf�kc � � rounds of
communication in the worst case—assuming n � f � k � �, meaning that there are at
least k�� nonfaulty processors—and we prove a matching upper bound by exhibiting a
protocol that solves k-set agreement in bf�kc�� rounds. Since consensus is just �-set
agreement, our lower bound implies the well-known lower bound of f � � rounds for
consensus when n � f � � [FL82]. More important, the running time r � bf�kc� �
demonstrates that there is a smooth but inescapable tradeoff among the number f of
faults tolerated, the degree k of coordination achieved, and the time r the protocol
must run. For a fixed value of f , Figure 1 shows that 2-set agreement can be achieved
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Figure 1: Tradeoff between rounds and degree of coordination.

in half the time needed to achieve consensus. In addition, the lower bound proof itself
is interesting because of the geometric proof technique we use, combining ideas due
to Chaudhuri [Cha91, Cha93], Fischer and Lynch [FL82], Herlihy and Shavit [HS93],
and Dwork, Moses, and Tuttle [DM90, MT88].

In the past few years, researchers have developed powerful new tools based on
classical algebraic topology for analyzing tasks in asynchronous models (e.g., [AR96,
BG93, GK96, HR94, HR95, HS93, HS94, SZ93]).

The principal innovation of these papers is to model computations as simplicial
complexes (rather than graphs) and to derive connections between computations and
the topological properties of their complexes. This paper extends this topological ap-
proach in several new ways: it is the first to derive results in the synchronous model,
it derives lower bounds rather than computability results, and it uses explicit construc-
tions instead of existential arguments.

Although the synchronous model makes some strong (and possibly unrealistic) as-
sumptions, it is well-suited for proving lower bounds. The synchronous model is a
special case of almost every realistic model of a concurrent system we can imagine,
and therefore any lower bound for k-set agreement in this simple model translates into
a lower bound in any more complex model. For example, our lower bound holds for
models that permit messages to be lost, failed processors to restart, or processor speeds
to vary. Moreover, our techniques may be helpful in understanding how to prove (pos-
sibly) stricter lower bounds in more complex models. Naturally, our protocol for k-set
agreement in the synchronous model does not work in more general models, but it is
still useful because it shows that our lower bound is the best possible in the synchronous
model.

This paper is organized as follows. In Section 2, we give an informal overview
of our lower bound proof. In Section 3 we define our model of computation, and in
Section 4 we define k-set agreement. In Sections 5 through 9 we prove our lower
bound, and in Section 10 we give a protocol solving k-set agreement, proving the
matching upper bound.
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2 Overview

We start with an informal overview of the ideas used in the lower bound proof. For
the remainder of this paper, suppose P is a protocol that solves k-set agreement and
tolerates the failure of f out of n processors, and suppose P halts in r � bf�kc � �
rounds. This means that all nonfaulty processors have chosen an output value at time r
in every execution of P . In addition, suppose n � f � k � �, which means that at
least k � � processors never fail. Our goal is to consider the global states that occur at
time r in executions of P , and to show that in one of these states there are k � � pro-
cessors that have chosen k � � distinct values, violating k-set agreement. Our strategy
is to consider the local states of processors that occur at time r in executions of P , and
to investigate the combinations of these local states that occur in global states. This
investigation depends on the construction of a geometric object. In this section, we use
a simplified version of this object to illustrate the general ideas in our proof.

Since consensus is a special case of k-set agreement, it is helpful to review the stan-
dard proof of the f �� round lower bound for consensus [FL82, DS83, Mer85, DM90]
to see why new ideas are needed for k-set agreement. Suppose that the protocol P is
a consensus protocol, which means that in all executions of P all nonfaulty processors
have chosen the same output value at time r. Two global states g� and g� at time r are
said to be similar if some nonfaulty processor p has the same local state in both global
states. The crucial property of similarity is that the decision value of any processor
in one global state completely determines the decision value for any processor in all
similar global states. For example, if all processors decide v in g�, then certainly p de-
cides v in g�. Since p has the same local state in g� and g�, and since p’s decision value
is a function of its local state, processor p also decides v in g�. Since all processors
agree with p in g�, all processors decide v in g�, and it follows that the decision value
in g� determines the decision value in g�. A similarity chain is a sequence of global
states, g�� � � � � g�, such that gi is similar to gi��. A simple inductive argument shows
that the decision value in g� determines the decision value in g�. The lower bound proof
consists of showing that all time r global states of P lie on a single similarity chain. It
follows that all processors choose the same value in all executions of P , independent
of the input values, violating the definition of consensus.

The problem with k-set agreement is that the decision values in one global state do
not determine the decision values in similar global states. If p has the same local state
in g� and g�, then p must choose the same value in both states, but the values chosen
by the other processors are not determined. Even if n � � processors have the same
local state in g� and g�, the decision value of the last processor is still not determined.
The fundamental insight in this paper is that k-set agreement requires considering all
“degrees” of similarity at once, focusing on the number and identity of local states
common to two global states. While this seems difficult—if not impossible—to do us-
ing conventional graph theoretic techniques like similarity chains, there is a geometric
generalization of similarity chains that provides a compact way of capturing all degrees
of similarity simultaneously, and it is the basis of our proof.

A simplex is just the natural generalization of a triangle to n dimensions: for ex-
ample, a �-dimensional simplex is a vertex, a �-dimensional simplex is an edge linking
two vertices, a �-dimensional simplex is a solid triangle, and a �-dimensional simplex
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Figure 2: Global states for zero, one, and two-round protocols.
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Bermuda Triangle

Figure 3: Global states for an r-round protocol (showing the embedded Bermuda Tri-
angle).

is a solid tetrahedron. We can represent a global state for an n-processor protocol as
an �n � ��-dimensional simplex [Cha93, HS93], where each vertex is labeled with a
processor id and local state. If g� and g� are global states in which p� has the same
local state, then we “glue together” the vertices of g� and g� labeled with p�. Figure 2
shows how these global states glue together in a simple protocol in which each of three
processors repeatedly sends its state to the others. Each process begins with a binary
input. The first picture shows the possible global states after zero rounds: since no
communication has occurred, each processor’s state consists only of its input. It is easy
to check that the simplices corresponding to these global states form an octahedron.
The next picture shows the complex after one round. Each triangle corresponds to a
failure-free execution, each free-standing edge to a single-failure execution, and so on.
The third picture shows the possible global states after three rounds.

The set of global states after an r-round protocol is quite complicated (Figure 3),
but it contains a well-behaved subset of global states which we call the Bermuda Trian-
gle B, since all fast protocols vanish somewhere in its interior. The Bermuda Triangle
(Figure 4) is constructed by starting with a large k-dimensional simplex, and triangu-
lating it into a collection of smaller k-dimensional simplexes. We then label each vertex
with an ordered pair �p� s� consisting of a processor identifier p and a local state s in
such a way that for each simplex T in the triangulation there is a global state g con-
sistent with the labeling of the simplex: for each ordered pair �p� s� labeling a corner
of T , processor p has local state s in global state g.

To illustrate the process of labeling vertices, Figure 5 shows a simplified repre-
sentation of a two-dimensional Bermuda Triangle B. It is the Bermuda Triangle for



6 2 OVERVIEW

(P,a) (Q,b)

(R,c)

(S,d)

each simplex is
consistent with a
global state

vertices labeled with 
(processor, local state)
pairs

Figure 4: Bermuda Triangle with simplex representing typical global state.
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Figure 5: The Bermuda Triangle for 5 processors and a 1-round protocol for 2-set
agreement.

a protocol P for 	 processors solving �-set agreement in � round. We have labeled
grid points with local states, but we have omitted processor ids and many intermediate
nodes for clarity. The local states in the figure are represented by expressions such
as bb
aa. Given � distinct input values a� b� c, we write bb
aa to denote the local state
of a processor p at the end of a round in which the first two processors have input value b
and send messages to p, the middle processor fails to send a message to p, and the last
two processors have input value a and send messages to p. In Figure 5, following any
horizontal line from left to right across B, the input values are changed from a to b.
The input value of each processor is changed—one after another—by first silencing the
processor, and then reviving the processor with the input value b. Similarly, moving
along any vertical line from bottom to top, processors’ input values change from b to c.

The complete labeling of the Bermuda Triangle B shown in Figure 5—which
would include processor ids—has the following property. Let �p� s� be the label of
a grid point x. If x is a corner of B, then s specifies that each processor starts with the
same input value, so p must choose this value if it finishes protocol P in local state s.
If x is on an edge of B, then s specifies that each processor starts with one of the two
input values labeling the ends of the edge, so p must choose one of these values if it
halts in state s. Similarly, if x is in the interior of B, then s specifies that each processor
starts with one of the three values labeling the corners of B, so p must choose one of
these three values if it halts in state s.

Now let us “color” each grid point with output values (Figure 6). Given a grid
point x labeled with �p� s�, let us color x with the value v that p chooses in local state s
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Figure 6: Sperner’s Lemma.

at the end of P . This coloring of B has the property that the color of each of the cor-
ners is determined uniquely, the color of each point on an edge between two corners is
forced to be the color of one of the corners, and the color of each interior point can be
the color of any corner. Colorings with this property are called Sperner colorings, and
have been studied extensively in the field of algebraic topology. At this point, we ex-
ploit a remarkable combinatorial result first proved in 1928: Sperner’s Lemma [Spa66,
p.151] states that any Sperner coloring of any triangulated k-dimensional simplex must
include at least one simplex whose corners are colored with all k � � colors. In our
case, however, this simplex corresponds to a global state in which k � � processors
choose k�� distinct values, which contradicts the definition of k-set agreement. Thus,
in the case illustrated above, there is no protocol for �-set agreement halting in � round.

We note that the basic structure of the Bermuda Triangle and the idea of coloring the
vertices with decision values and applying Sperner’s Lemma have appeared in previous
work by Chaudhuri [Cha91, Cha93]. In that work, she also proved a lower bound
of bf�kc � � rounds for k-set agreement, but for a very restricted class of protocols.
In particular, a protocol’s decision function can depend only on vectors giving partial
information about which processors started with which input values, but cannot depend
on any other information in a processor’s local state, such as processor identities or
message histories. The technical challenge in this paper is to construct a labeling of
vertices with processor ids and local states that will allow us to prove a lower bound
for k-set agreement for arbitrary protocols.

Our approach consists of four parts. First, we label points on the edges of B with
global states. For example, consider the edge between the corner where all processors
start with input value a and the corner where all processors start with b. We construct
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a long sequence of global states that begins with a global state in which all processors
start with a, ends with a global state in which all processors start with b, and in between
systematically changes input values from a to b. These changes are made so gradually,
however, that for any two adjacent global states in the sequence, at most one processor
can distinguish them. Second, we label each remaining point using a combination of
the global states on the edges. Third, we assign nonfaulty processors to points in such
a way that the processor labeling a point has the same local state in the global states
labeling all adjacent points. Finally, we project each global state onto the associated
nonfaulty processor’s local state, and label the point with the resulting processor-state
pair.

3 The Model

We use a synchronous, message-passing model with crash failures. The system con-
sists of n processors, p�� � � � � pn. Processors share a global clock that starts at � and
advances in increments of �. Computation proceeds in a sequence of rounds, with
round r lasting from time r � � to time r. Computation in a round consists of three
phases: first each processor p sends messages to some of the processors in the sys-
tem, possibly including itself, then it receives the messages sent to it during the round,
and finally it performs some local computation and changes state. We assume that the
communication network is totally connected: every processor is able to send distinct
messages to every other processor in every round. We also assume that communication
is reliable (although processors can fail): if p sends a message to q in round r, then the
message is delivered to q in round r.

Processors follow a deterministic protocol that determines what messages a pro-
cessor should send and what output a processor should generate. A protocol has two
components: a message component that maps a processor’s local state to the list of
messages it should send in the next round, and an output component that maps a pro-
cessor’s local state to the output value (if any) that it should choose. Processors can be
faulty, however, and any processor p can simply stop in any round r. In this case, pro-
cessor p follows its protocol and sends all messages the protocol requires in rounds 1
through r� �, sends some subset of the messages it is required to send in round r, and
sends no messages in rounds after r. We say that p is silent from round r if p sends
no messages in round r or later. We say that p is active through round r if p sends all
messages in round r and earlier.

A full-information protocol is one in which every processor broadcasts its en-
tire local state to every processor, including itself, in every round [PSL80, FL82,
Had83]. One nice property of full-information protocols is that every execution of
a full-information protocol P has a compact representation called a communication
graph [MT88]. The communication graph G for an r-round execution of P is a two-
dimensional two-colored graph. The vertices form an n � r grid, with processor
names � through n labeling the vertical axis and times � through r labeling the hor-
izontal axis. The node representing processor p at time i is labeled with the pair hp� ii.
Given any pair of processors p and q and any round i, there is an edge between hp� i� �i
and hq� ii whose color determines whether p successfully sends a message to q in
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Figure 7: A three-round communication graph.

round i: the edge is green if p succeeds, and red otherwise. In addition, each node hp� �i
is labeled with p’s input value. Figure 7 illustrates a three round communication graph.
In this figure, green edges are denoted by solid lines and red edges by dashed lines.
We refer to the edge between hp� i� �i and hq� ii as the round i edge from p to q, and
we refer to the node hp� i� �i as the round i node for p since it represents the point
at which p sends its round i messages. We define what it means for a processor to be
silent or active in terms of communication graphs in the obvious way.

In the crash failure model, a processor is silent in all rounds following the round in
which it stops. This means that all communication graphs representing executions in
this model have the property that if a round i edge from p is red, then all round j � i��
edges from p are red, which means that p is silent from round i��. We assume that all
communication graphs in this paper have this property, and we note that every r-round
graph with this property corresponds to an r-round execution of P .

Since a communication graph G describes an execution of P , it also determines
the global state at the end of P , so we sometimes refer to G as a global communica-
tion graph. In addition, for each processor p and time t, there is a subgraph of G that
corresponds to the local state of p at the end round t, and we refer to this subgraph as
a local communication graph. The local communication graph for p at time t is the
subgraph G�p� t� of G containing all the information visible to p at the end of round t.
Namely, G�p� t� is the subgraph induced by the node hp� ti and all earlier nodes reach-
able from hp� ti by a sequence (directed backwards in time) of green edges followed by
at most one red edge. In the remainder of this paper, we use graphs to represent states.
Wherever we used “state” in the informal overview of Section 2, we now substitute the
word “graph.” Furthermore, we defined a full-information protocol to be a protocol in
which processors broadcast their local states in every round, but we now assume that
processors broadcast their local communication graphs instead. In addition, we assume
that all executions of a full-information protocol run for exactly r rounds and produce
output at exactly time r. All local and global communication graphs are graphs at
time r, unless otherwise specified.

The crucial property of a full-information protocol is that every protocol can be
simulated by a full-information protocol, and hence that we can restrict attention to
full-information protocols when proving the lower bound in this paper:

Lemma 1: If there is an n-processor protocol solving k-set agreement with f fail-
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ures in r rounds, then there is an n-processor full-information protocol solving k-set
agreement with f failures in r rounds.

4 The k-set Agreement Problem

The k-set agreement problem [Cha91] is defined as follows. We assume that each
processor pi has two private registers in its local state, a read-only input register and a
write-only output register. Initially, pi’s input register contains an arbitrary input value
from a set V containing at least k�� values v�� � � � � vk, and its output register is empty.
A protocol solves the problem if it causes each processor to halt after writing an output
value to its output register in such a way that

1. every processor’s output value is some processor’s input value, and

2. the set of output values chosen has size at most k.

5 Bermuda Triangle

In this section, we define the basic geometric constructs used in our proof that every
protocolP solving k-set agreement and tolerating f failures requires at least bf�kc��
rounds of communication, assuming n � f � k � ��

We start with some preliminary definitions. A simplex S is the convex hull of k � �
affinely-independent1 points x�� � � � � xk in Euclidean space. It is a k-dimensional
volume, the k-dimensional analogue of a solid triangle or tetrahedron. The points
x�� � � � � xk are called the vertices of S, and k is the dimension of S. We sometimes
call S a k-simplex when we wish to emphasize its dimension. A simplex F is a face
of S if the vertices of F form a subset of the vertices of S (which means that the di-
mension of F is at most the dimension of S). A set of k-simplexes S�� � � � � S� is a
triangulation of S if S � S� � � � � � S� and the intersection of Si and Sj is a face of
each2 for all pairs i and j. The vertices of a triangulation are the vertices of the S i. Any
triangulation of S induces triangulations of its faces in the obvious way.

The construction of the Bermuda Triangle is illustrated in Figure 8. Let B be the k-
simplex in k-dimensional Euclidean space with vertices

��� � � � � ��� �N� �� � � � � ��� �N�N� �� � � � � ��� � � � � �N� � � � � N��

where N is a huge integer defined later in Section 6.3. The Bermuda Triangle B is a
triangulation of B defined as follows. The vertices of B are the grid points contained
in B: these are the points of the form x � �x�� � � � � xk�, where the xi are integers
between � and N satisfying x� � x� � � � � � xk .

Informally, the simplexes of the triangulation are defined as follows: pick any grid
point and walk one step in the positive direction along each dimension (Figure 9).

1Points x�� � � � � xk are affinely independent if x� � x�� � � � � xk � x� are linearly independent.
2Notice that the intersection of two arbitrary k-dimensional simplexes Si and Sj will be a volume of

some dimension, but it need not be a face of either simplex.
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Figure 8: Construction of Bermuda Triangle.

Figure 9: Simplex generation in Kuhn’s triangulation.



13

The k � � points visited by this walk define the vertices of a simplex, and the trian-
gulation B consists of all simplexes determined by such walks. For example, the 2-
dimensional Bermuda Triangle is illustrated in Figure 5. This triangulation, known as
Kuhn’s triangulation, is defined formally as follows [Cha93]. Let e �� � � � � ek be the
unit vectors; that is, ei is the vector ��� � � � � �� � � � � �� with a single 1 in the ith coordi-
nate. A simplex is determined by a point y� and an arbitrary permutation f�� � � � � fk of
the unit vectors e�� � � � � ek: the vertices of the simplex are the points yi � yi�� � fi
for all i � �. When we list the vertices of a simplex, we always write them in the
order y�� � � � � yk in which they are visited by the walk.

For brevity, we refer to the vertices of B as the corners of B. The “edges” of B are
partitioned to form the edges of B. More formally, the triangulationB induces triangu-
lations of the one-dimensional faces (line segments connecting the vertices) of B, and
these induced triangulations are called the edges of B. The simplexes of B are called
primitive simplexes.

Each vertex ofB is labeled with an ordered pair �p�L� consisting of a processor id p
and a local communication graphL. As illustrated in the overview in Section 2, the cru-
cial property of this labeling is that if S is a primitive simplex with vertices y�� � � � � yk,
and if each vertex yi is labeled with a pair �qi�Li�, then there is a global communica-
tion graph G such that each qi is nonfaulty in G and has local communication graph L i

in G. Constructing this labeling is the subject of the next three sections. We first assign
global communication graphs G to vertices in Section 6, then we assign processors p to
vertices in Section 7, and then we assign ordered pairs �p�L� to vertices in Section 8,
where L is the local communication graph of p in G.

6 Graph Assignment

In this section, we label each vertex ofB with a global communication graph. Actually,
for expository reasons, we augment the definition of a communication graph and label
vertices of B with these augmented communication graphs instead. Constructing this
labeling involves several steps. We define operations on augmented communication
graphs that make minor changes in the graphs, and we use these operations to construct
long sequences of graphs. Then we label vertices along edges of B with graphs from
these sequences, and we label interior vertices of B by performing a merge of the
graphs labeling the edges.

6.1 Augmented Communication Graphs

We extend the definition of a communication graph to make the processor assignment
in Section 7 easier to describe. We augment communication graphs with tokens, and
place tokens on the graph so that if processor p fails in round i, then there is a token
on the node hp� j � �i for processor p in some earlier round j � i (Figure 10). In this
sense, every processor failure is “covered” by a token, and the number of processors
failing in the graph is bounded from above by the number of tokens. In the next few
sections, when we construct long sequences of these graphs, tokens will be moved be-
tween adjacent processors within a round, and used to guarantee that processor failures
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Figure 10: Three-round communication graph with one token per round.

in adjacent graphs change in a orderly fashion. For every value of �, we define graphs
with exactly � tokens placed on nodes in each round, but we will be most interested in
the two cases with � equal to � and k.

For each value � � �, we define an �-graph G to be a communication graph with
tokens placed on the nodes of the graph that satisfies the following conditions for each
round i, � � i � r:

1. The total number of tokens on round i nodes is exactly �.

2. If a round i edge from p is red, then there is a token on a round j � i node for p.

3. If a round i edge from p is red, then p is silent from round i� �.

We say that p is covered by a round i token if there is a token on the round i node for p,
we say that p is covered in round i if p is covered by a round j � i token, and we
say that p is covered in a graph if p is covered in any round. Similarly, we say that a
round i edge from p is covered if p is covered in round i. The second condition says
every red edge is covered by a token, and this together with the first condition implies
that at most �r processors fail in an �-graph. We often refer to an �-graph as a graph
when the value of � is clear from context or unimportant. We emphasize that the tokens
are simply an accounting trick, and have no meaning as part of the global or local state
in the underlying communication graph.

We define a failure-free �-graph to be an �-graph in which all edges are green, and
all round i tokens are on processor p� in all rounds i.

6.2 Graph operations

We now define four operations on augmented graphs that make only minor changes to
a graph. In particular, the only change an operation makes is to change the color of
a single edge, to change the value of a single processor’s input, or to move a single
token between adjacent processors within the same round. The operations are defined
as follows (see Figure 11):

1. delete�i� p� q�: This operation changes the color of the round i edge from p to q
to red, and has no effect if the edge is already red. This makes the delivery of the
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Figure 11: Operations on augmented communication graphs.
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round i message from p to q unsuccessful. It can only be applied to a graph if p
and q are silent from round i� �, and p is covered in round i.

2. add�i� p� q�: This operation changes the color of the round i edge from p to q to
green, and has no effect if the edge is already green. This makes the delivery of
the round i message from p to q successful. It can only be applied to a graph if p
and q are silent from round i��, processor p is active through round i��, and p
is covered in round i.

3. change�p� v�: This operation changes the input value for processor p to v, and
has no effect if the value is already v. It can only be applied to a graph if p is
silent from round �, and p is covered in round �.

4. move�i� p� q�: This operation moves a round i token from hp� i� �i to hq� i� �i,
and is defined only for adjacent processors p and q (that is, fp� qg � fp j � pj��g
for some j). It can only be applied to a graph if p is covered by a round i token,
and all red edges are covered by other tokens.

It is obvious from the definition of these operations that they preserve the property of
being an �-graph: if G is an �-graph and � is a graph operation, then ��G� is an �-graph.
We define delete, add, and change operations on communication graphs in exactly the
same way, except that the condition “p is covered in round i” is omitted.

6.3 Graph sequences

We now define a sequence 	�v� of graph operations that can be applied to any failure-
free graph G to transform it into the failure-free graph G�v� in which all processors
have input v. We want to emphasize that the sequences 	�v� differ only in the value v.
For this reason, we define a parameterized sequence 	�V� with the property that for all
values v and all graphs G, the sequence 	�v� transforms G to G�v�. In general, we define
a parameterized sequence 	�X�� � � � � X�� to be a sequence of graph operations with free
variables X�� � � � � X� appearing as parameters to the graph operations in the sequence.

Given a graph G, let red�G� p�m� and green�G� p�m� be graphs identical to G ex-
cept that all edges from p in roundsm� � � � � r are red and green, respectively. We define
these graphs only if

1. p is covered in round m in G,

2. all faulty processors are silent from round m (or earlier) in G, and

3. and all tokens are on p� in rounds m� �� � � � � r in G.

In addition, we define the graph green�G� p�m� only if

4. p is active through round m� � in G.

These restrictions guarantee that if G is an �-graph and red�G� p�m� and green�G� p�m�
are defined, then red�G� p�m� and green�G� p�m� are both �-graphs.
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In the case of ordinary communication graphs, a result by Moses and Tuttle [MT88]
implies that there is a “similarity chain” of graphs between G and red�G� p�m� and be-
tween G and green�G� p�m�. In their proof—a refinement of similar proofs by Dwork
and Moses [DM90] and others—the sequence of graphs they construct has the property
that each graph in the chain can be obtained from the preceding graph by applying a
sequence of the add, delete, and change graph operations defined above. The same
proof works for augmented communication graphs, provided we insert move opera-
tions between the add, delete, and change operations to move tokens between nodes
appropriately. With this modification, we can prove the following. Let faulty�G� be the
set of processors that fail in G.

Lemma 2: For every processor p, round m, and set 
 of processors, there are se-
quences silence��p�m� and revive��p�m� such that for all graphs G:

1. If red�G� p�m� is defined and 
 � faulty�G�, then

silence��p�m��G� � red�G� p�m��

2. If green�G� p�m� is defined and 
 � faulty�G�, then

revive��p�m��G� � green�G� p�m��

Proof: We proceed by reverse induction on m. Suppose m � r. Define

silence��p� r� � delete�r� p� p�� � � � delete�r� p� pn�

revive��p� r� � add�r� p� p�� � � � add�r� p� pn��

For part 1, let G be any graph and suppose red�G� p� r� is defined. For each i with
� � i � n, let Gi be the graph identical to G except that the round r edges from p
to p�� � � � � pi are red. Since red�G� p� r� is defined, condition 1 implies that p is covered
in round r in G. For each i with � � i � n, it follows that Gi�� is really a graph,
and delete�r� p� pi� can be applied to Gi�� and transforms it to Gi. Since G � G�
and Gn � red�G� p� r�, it follows that silence��p� r� transforms G to red�G� p� r�. For
part 2, let G be any graph and suppose green�G� p� r� is defined. The proof of this part
is the direct analogue of the proof of part 1. The only difference is that since we are
coloring round r edges from p green instead of red, we must verify that p is active
through round r � � in G, but this follows immediately from condition 4.

Suppose m � r and the induction hypothesis holds for m��. Define 
 � � 
�fpg
and define

set�m� �� pi� � move�m� �� p�� p�� � � �move�m� �� pi��� pi�

reset�m� �� pi� � move�m� �� pi� pi��� � � �move�m� �� p�� p���

The set function moves the token from p� to pi and the reset function moves the token
back from pi to p�.
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Define block�m� p� pi� to be delete�m� p� pi� if pi 	 
�, and otherwise

set�m� �� pi�
silence���pi�m� �� delete�m� p� pi� revive���fpig�pi�m� ��

reset�m� �� pi��

Define unblock�m� p� pi� to be add�m� p� pi� if pi 	 
�, and otherwise

set�m� �� pi�
silence���pi�m� �� add�m� p� pi� revive���fpig�pi�m� ��

reset�m� �� pi��

Finally, define

block�m� p� � block�m� p� p�� � � � block�m� p� pn�

unblock�m� p� � unblock�m� p� p�� � � � unblock�m� p� pn�

and define

silence��p�m� � silence��p�m� �� block�m� p�

revive��p�m� � silence��p�m� �� unblock�m� p� revive���p�m� ���

For part 1, let G be any graph, and suppose red�G� p�m� is defined and 
 �
faulty�G�. Since red�G� p�m� is defined, the graph red�G� p�m � �� is also defined,
and the induction hypothesis for m � � states that silence��p�m � �� transforms G
to red�G� p�m � ��. We now show that block�m� p� transforms red�G� p�m � ��
to red�G� p�m�, and we will be done. For each i with � � i � n, let Gi be the
graph identical to G except that p is silent from round m � � and the edges from p
to p�� � � � � pi are red in Gi. Since red�G� p�m� is defined, condition 1 implies that p is
covered in round m in G. For each i with � � i � n, it follows that G i really is a graph
and that 
� � faulty�Gi�. Since red�G� p�m � �� � G� and Gn � red�G� p�m�, it is
enough to show that block�m� p� pi� transforms Gi�� to Gi for each i with � � i � n.
The proof of this fact depends on whether p i 	 
�, so we consider two cases.

Consider the easy case with pi 	 
�. We know that p is covered in roundm in G i��

since it is covered in G by condition 1. We know that p is silent from round m � �
in Gi�� since it is silent in G� � red�G� p�m � ��. We know that pi is silent from
round m�� in Gi�� since pi 	 
� implies (assuming that pi is not just p again) that pi
fails in G, and hence is silent from round m � � in G by condition 2. This means
that block�m� p� pi� � delete�m� p� pi� can be applied to Gi�� to transform Gi�� to Gi.

Now consider the difficult case when pi 
	 
�. Let Hi�� andHi be graphs identical
to Gi�� and Gi, except that a single round m � � token is on p i in Hi�� and Hi.
Condition 3 guarantees that all round m� � tokens are on p � in G, and hence in Gi��
and Gi, so Hi�� and Hi really are graphs. In addition, set�m� �� pi� transforms Gi��
toHi��, and reset�m��� pi� transformsHi to Gi. Let Ii�� and Ii be identical toHi��

andHi except that pi is silent from roundm�� in Ii�� and Ii. Processor pi is covered
in round m � � in Hi�� and Hi, so Ii�� and Ii really are graphs. In fact, pi does
not fail in G since pi 
	 
�, so pi is active through round m in Ii�� and Ii, so Ii�� �
red�Hi��� pi�m��� andHi � green�Ii� pi�m���. The inductive hypothesis form��
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states that silence���pi�m��� transformsHi�� to Ii��, and revive���fpig�pi�m���
transforms Ii to Hi. Finally, notice that the only difference between I i�� and Ii is the
color of the round m edge from p to p i. Since p is covered in round m and p and p i are
silent from round m�� in both graphs, we know that delete�m� p� p i� transforms Ii��
to Ii. It follows that block�m� p� pi� transforms Gi�� to Gi, and we are done.

For part 2, let G be any graph and suppose green�G� p�m� is defined and 
 �
faulty�G�. Since green�G� p�m� is defined, let G � � green�G� p�m�. Now let H and H�

be graphs identical to G and G � except that p is silent from round m � � in H and H �.
Since green�G� p�m� is defined, processor p is covered in round m in G by condition 1
and hence in G �, so H and H� really are graphs. In addition, since green�G� p�m� is
defined, processor p is active through round m� � in G by condition 4, so processor p
is active through round m in G � and H�. This means that green�H�� p�m � �� is de-
fined, and in fact we have H � red�G� p�m � �� and G � � green�H�� p�m � ��. The
induction hypothesis for m � � states that silence��p�m � �� transforms G to H and
that revive���p�m��� transformsH� to G�. To complete the proof, we need only show
that unblock�m� p� transforms H to H �. The proof of this fact is the direct analogue of
the proof in part 1 that block�m� p� transforms red�G� p�m � �� to red�G� p�m�. The
only difference is that since we are coloring round m edges from p with green instead
of red, we must verify that p is active through round m� � in the graphsH i analogous
to Gi in the proof of part 1, but this follows immediately from condition 4.

Given a graph G, let Gi�v� be a graph identical to G, except that processor p i has
input v. Using the preceding result, we can transform G to G i�v�.

Lemma 3: For each i, there is a parameterized sequence 	 i�V� with the property that
for all values v and failure-free graphs G, the sequence 	 i�v� transforms G to Gi�v�.

Proof: Define

set��� pi� � move��� p�� p�� � � �move��� pi��� pi�

reset��� pi� � move��� pi� pi��� � � �move��� p�� p��

and define

	i�V� � set��� pi�silence��pi� ��change�pi� V�revivefpig�pi� ��reset��� pi�

where � denotes the empty set. Now consider any value v and any failure-free graph G,
and let G � � Gi�v�. Since G and G � are failure-free graphs, all round 1 tokens are on p �,
so let H and H� be graphs identical to G and G � except that a single round 1 token is
on pi inH andH�. We know thatH andH� are graphs, and that set��� pi� transforms G
to H and reset��� pi� transforms H� to G�. Since pi is covered in H and H�, let I
and I � be identical to H and H� except that pi is silent from round 1. We know that I
and I � are graphs, and it follows by Lemma 2 that silence��pi� �� transforms H to I
and that revivefpig�pi� �� transforms I � to H�. Finally, notice that I and I � differ only
in the input value for pi. Since pi is covered and silent from round 1 in both graphs,
the operation change�pi� v� can be applied to I and transforms it to I �. Stringing all of
this together, it follows that 	i�v� transforms G to G � � Gi�v�.

By concatenating such operation sequences, we can transformG into G�v� by chang-
ing processors’ input values one at a time:
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Lemma 4: Let 	�V� � 	��V� � � �	n�V�. For every value v and failure-free graph G, the
sequence 	�v� transforms G to G�v�.

Now we can define the parameter N used in defining the shape of B: N is the length
of the sequence 	�V�, which is exponential in r.

6.4 Graph merge

Speaking informally, we will use each sequence 	�v i� of graph operations to generate
a sequence of graphs, and we will use this sequence of graphs to label vertices along
the edge of B in the ith dimension. Then we will label vertices in the interior of B by
performing a “merge” of the graphs on the edges in the different dimensions.

The merge of a sequence H�� � � � �Hk of graphs is a graph defined as follows:

1. an edge e is colored red if it is red in any of the graphs H �� � � � �Hk, and green
otherwise, and

2. an initial node hp� �i is labeled with the value vi where i is the maximum index
such that hp� �i is labeled with vi in Hi, or v� if no such i exists, and

3. the number of tokens on a node hp� ii is the sum of the number of tokens on the
node in the graphs H�� � � � �Hk.

The first condition says that a message is missing in the resulting graph if and only
if it is missing in any of the merged graphs. To understand the second condition,
notice that for each processor pj there is a integer sj with the property that pj’s input
value in changed to vi by the sj th operation appearing in 	�vi�. Now choose a vertex
x � �x�� � � � � xk� of B, and imagine walking from the origin to x by walking along the
first dimension to �x�� �� � � � � ��, then along the second dimension to �x�� x�� �� � � � � ��,
and so forth. In each dimension i, processor p j’s input is changed from vi�� to vi
after sj steps in this dimension. Since x� � x� � � � � � xk, there is a final dimension i
in which pj’s input is changed to vi, and never changed again. The second condition
above is just a compact way of identifying this final value v i.

Lemma 5: LetH be the merge of the graphsH�� � � � �Hk. IfH�� � � � �Hk are �-graphs,
then H is a k-graph.

Proof: We consider the three conditions required of a k-graph in turn. First, there are k
tokens in each round ofH since there is � token in each round of each graphH �� � � � �Hk.
Second, every red edge in H is covered by a token since every red edge in H corre-
sponds to a red edge in one of the graphsH j , and this edge is covered by a token inHj .
Third, if there is a red edge from p in round i in H, then there is a red from p in round i
of one of the graphs Hj . In this graph, p is silent from round i� �, so the same is true
in H. Thus, H is a k-graph.
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6.5 Graph assignments

Now we can define the assignment of graphs to vertices of B. For each value v i, let Fi

be the failure-free �-graph in which all processors have input v i. Let x � �x�� � � � � xk�
be an arbitrary vertex of B. For each coordinate x j , let 	j be the prefix of 	�vj � consist-
ing of the first xj operations, and let Hj be the �-graph resulting from the application
of 	j to Fj��. This means that in Hj , some set p�� � � � � pi of adjacent processors have
had their inputs changed from vj�� to vj . The graph G labeling x is defined to be the
merge of H�� � � � �Hk. We know that G is a k-graph by Lemma 5, and hence that at
most rk � f processors fail in G.

Remember that we always write the vertices of a primitive simplex in a canonical
order y�� � � � � yk. In the same way, we always write the graphs labeling the vertices] of
a primitive simplex in the canonical order G�� � � � �Gk, where Gi is the graph labeling yi.

6.6 Graphs on a simplex

The graphs labeling the vertices of a primitive simplex have some convenient proper-
ties. For this section, fix a primitive simplex S, and let y�� � � � � yk be the vertices of S
and let G�� � � � �Gk be the graphs labeling the corresponding vertices of S. Our first re-
sult says that any processor that is uncovered at a vertex of S is nonfaulty at all vertices
of S.

Lemma 6: If processor q is not covered in the graph labeling a vertex of S, then q is
nonfaulty in the graph labeling every vertex of S.

Proof: Let y� � �a�� � � � � ak� be the first vertex of S. For each i, let 	i and 	i�i be the
prefixes of 	�vi� consisting of the first ai and ai�� operations, and letHi andH�

i be the
result of applying 	i and 	i�i to Fi��. For each i, we know that the graph Gi labeling
the vertex yi of S is the merge of graphs I i

�� � � � � I
i
k where I ij is either Hj or H�

j .
Suppose q is faulty in Gi. Then q must be faulty in some graph I i

j in the sequence of
graphs I i�� � � � � I

i
n merged to form Gi, so q must fail in one of the graphs Hj or H�

j .
Since 	j and 	j�j are prefixes of 	�vj �, it is easy to see from the definition of 	�vj �
that the fact that q fails in one of the graphs Hj and H�

j implies that q is covered in
both graphs. Since one of these graphs is contained in the sequence of graphs merged
to form Ga for each a, it follows that q is covered in each Ga. This contradicts the fact
that q is uncovered in a graph labeling a vertex of S.

Our next result shows that we can use the bound on the number of tokens to bound
the number of processors failing at any vertex of S.

Lemma 7: If Fi is the set of processors failing in Gi and F � �iFi, then jF j � rk �
f .

Proof: If q 	 F , then q 	 Fi for some i and q fails in Gi, so q is covered in every graph
labeling every vertex of S by Lemma 6. It follows that each processor in F is covered
in each graph labeling S. Since there are at most rk tokens to cover processors in any
graph, there are at most rk processors in F .
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We have assigned graphs to S, and now we must assign processors to S. A lo-
cal processor labeling of S is an assignment of distinct processors q�� � � � � qk to the
vertices y�� � � � � yk of S so that qi is uncovered in Gi for each yi. A global processor
labeling of B is an assignment of processors to vertices of B that induces a local pro-
cessor labeling at each primitive simplex. The final important property of the graphs
labeling S is that if we use a processor labeling to label S with processors, then S is
consistent with a single global communication graph. The proof of this requires a few
preliminary results.

Lemma 8: If Gi�� and Gi differ in p’s input value, then p is silent from round �
in G�� � � � �Gk. If Gi�� and Gi differ in the color of an edge from q to p in round t,
then p and q are silent from round t� � in G�� � � � �Gk.

Proof: Suppose the two graphs Gi�� and Gi labeling vertices yi�� and yi differ in
the input to p at time t � � or in the color of an edge from q to p in round t.
The vertices differ in exactly one coordinate j, so y i�� � �a�� � � � � aj � � � � � ak� and
yi � �a�� � � � � aj � �� � � � � ak�. For each �, let 	� be the prefix of 	�v�� consisting of
the first a� operations, and let H�

� be the result of applying 	� to F���. Furthermore,
in the special case of � � j, let 	j�j be the prefix of 	�vj � consisting of the first aj � �
operations, and let H�

j be the result of applying 	j�j to Fj��.
We know that Gi�� is the merge of H�

�� � � � �H
�
j � � � � �H

�
k, and that Gi is the merge

ofH�
�� � � � �H

�
j � � � � �H

�
k. IfH�

j andH�
j are equal, then Gi�� and Gi are equal. Thus,H�

j

and H�
j must differ in the input to p at time t � � or in the color of an edge between q

and p in round t, exactly as Gi�� and Gi differ. Since H�
j and H�

j are the result of
applying 	j and 	j�j toFj��, this change at time t must be caused by the operation � j .
It is easy to see from the definition a graph operation like � j that (1) if �j changes p’s
input value, then p is silent from round � in H�

j andH�
j , and (2) if �j changes the color

of an edge from q to p in round t, then p and q are silent from round t�� inH �
j andH�

j .
Consequently, the same is true in the merged graphs G i�� and Gi.

Lemma 9: If Gi�� and Gi differ in the local communication graph of p at time t, then p
is silent from round t� � in G�� � � � �Gk.

Proof: We proceed by induction on t. If t � �, then the two graphs must differ in
the input to p at time �, and Lemma 8 implies that p is silent from round � in the
graphs G�� � � � �Gk labeling the simplex. Suppose t � � and the inductive hypothesis
holds for t � �. Processor p’s local communication graph at time t can differ in the
two graphs for one of two reasons: either p hears from some processor q in round t in
one graph and not in the other, or p hears from some processor q in both graphs but q
has different local communication graphs at time t � � in the two graphs. In the first
case, Lemma 8 implies that p is silent from round t�� in the graphs G�� � � � �Gk. In the
second case, the induction hypothesis for t� � implies that q is silent from round t in
the graphs G�� � � � �Gk. In particular, q is silent in round t in Gi�� and Gi, contradicting
the assumption that p hears from q in round t in both graphs, so this case can’t happen.



6.6 Graphs on a simplex 23

Lemma 10: If p sends a message in round r in any of the graphs G �� � � � �Gk, then p
has the same local communication graph at time r � � in all of the graphs G �� � � � �Gk.

Proof: If p has different local communication graphs at time r � � in two of the
graphs G�� � � � �Gk, then there are two adjacent graphs Gi�� and Gi in which p has
different local communication graphs at time r� �. By Lemma 9, p is silent in round r
in all of the graphs G�� � � � �Gk, contradicting the assumption that p sent a round r
message in one of them.

Finally, we can prove the crucial property of primitive simplexes in the Bermuda
Triangle:

Lemma 11: Given a local processor labeling, let q�� � � � � qk be the processors labeling
the vertices of S, and let Li be the local communication graph of q i in Gi. There is a
global communication graph G with the property that each q i is nonfaulty in G and has
the local communication graph Li in G.

Proof: Let Q be the set of processors that send a round r message in any of the
graphs G�� � � � �Gk. Notice that this set includes the uncovered processors q�� � � � � qk,
since Lemma 6 says that these processors are nonfaulty in each of these graphs. For
each processor q 	 Q, Lemma 10 says that q has the same local communication graph
at time r � � in each graph G�� � � � �Gk.

Let H be the global communication graph underlying any one of these graphs.
Notice that each processor q 	 Q is active through round r�� inH. To see this, notice
that since q sends a message in round r in one of the graphs labeling S, it sends all
messages in round r�� in that graph. On the other hand, if q fails to send a message in
round r � � in H, then the same is true for the corresponding graph labeling S. Thus,
there are adjacent graphs Gi�� and Gi labeling S where p sends a round r� � message
in one and not in the other. Consequently, Lemma 8 says q is silent in round r in all
graphs labeling S, but this contradicts the fact that q does send a round r message in
one of these graphs.

Now let G be the global communication graph obtained from H by coloring green
each round r edge from each processor q 	 Q, unless the edge is red in one of the local
communication graphs L�� � � � �Lk in which case we color it red in G as well. Notice
that since the processors q 	 Q are active through round r�� inH, changing the color
of a round r edge from a processor q 	 Q to either red or green is acceptable, provided
we do not cause more that f processors to fail in the process. Fortunately, Lemma 7
implies that there are at least n � rk � n� f processors that do not fail in any of the
graphs G�� � � � �Gk . This means that there is a set of n� f processors that send to every
processor in round r of every graph G i, and in particular that the round r edges from
these processors are green in every local communication graph L i. It follows that for
at least n� f processors, all round r edges from these processors are green in G, so at
most f processors fail in G.

Each processor qi is nonfaulty in G, since qi is nonfaulty in each G�� � � � �Gk, mean-
ing each edge from qi is green in each G�� � � � �Gk and L�� � � � �Lk, and therefore in G.
In addition, each processor qi has the local communication graph Li in G. To see this,
notice that Li consists of a round r edge from pj to qi for each j, and the local com-
munication graph for pj at time r � � if this edge is green. This edge is green in Li
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if and only if it is green in G. In addition, if this edge is green in L i, then it is green
in Gi. In this case, Lemma 10 says that pj has the same local communication graph at
time r� � in each graph G�� � � � �Gk, and therefore in G. Consequently, q i has the local
communication graph Li in G.

7 Processor Assignment

What Lemma 11 at the end of the preceding section tells us is that all we have left to
do is to construct a global processor labeling. In this section, we show how to do this.
We first associate a set of “live” processors with each communication graph labeling a
vertex of B, and then we choose one processor from each set to label vertices of B.

7.1 Live processors

Given a graph G, we construct a set of c � n � rk � k � � uncovered (and hence
nonfaulty) processors. We refer to these processors as the live processors in G, and we
denote this set by live�G�. These live sets have one crucial property: if G and G � are two
graphs labeling adjacent vertices, and if p is in both live�G� and live�G ��, then p has the
same rank in both sets. As usual, we define the rank of p i in a set R of processors to
be the number of processors pj 	 R with j � i.

Given a graph G, we now show how to construct live�G�. This construction has one
goal: if G and G � are graphs labeling adjacent vertices, then the construction should
minimize the number of processors whose rank differs in the sets live�G� and live�G ��.
The construction of live�G� begins with the set of all processors, and removes a set
of rk processors, one for each token. This set of removed processors includes the
covered processors, but may include other processors as well. For example, suppose p i

and pi�� are covered with one token each in G, but suppose p i is uncovered and pi��
is covered by two tokens in G �. For simplicity, let’s assume these are the only tokens
on the graphs. When constructing the set live�G�, we remove both p i and pi�� since
they are both covered. When constructing the set live�G ��, we remove pi��, but we
must also remove a second processor corresponding to the second token covering p i��.
Which processor should we remove? If we choose a low processor like p �, then we have
changed the rank of a low processor like p� from � to �. If we choose a high processor
like pn, then we have change the rank of a high processor like pn�� from n�� to n��.
On the other hand, if we choose to remove p i again, then no processors change rank. In
general, the construction of live�G� considers each processor p in turn. If p is covered
by mp tokens in G, then the construction removes mp processors by starting with p,
working down the list of remaining processors smaller than p, and then working up the
list of processors larger than p if necessary.

Specifically, given a graph G, the multiplicity of p is the number mp of tokens ap-
pearing on nodes for p in G, and the multiplicity of G is the vectorm � hm p� � � � � �mpni.
Given the multiplicity of G as input, the algorithm given in Figure 12 computes live�G�.
In this algorithm, processor pi is denoted by its index i. We refer to the ith iteration
of the main loop as the ith step of the construction. This construction has two obvious
properties:
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S � f�� � � � � ng
for each i � �� � � � � n

count � 0
for each j � i� i� �� � � � � �� i� �� � � � � n

if count = mi then break
if j 	 S then

S � S � fjg
count � count + 1

live�G� � S

Figure 12: The construction of live�G�.

Lemma 12: If i 	 live�G� then

1. i is uncovered: mi � �

2. room exists under i:
Pi��

j��mj � i� �

Proof: Suppose i 	 live�G�. For part 1, if mi � � then i will be removed by step i if it
has not already removed by an earlier step, contradicting i 	 live�G�. For part 2, notice
that steps � through i � � remove a total of

Pi��
j��mj values. If this sum is greater

than i� �, then it is not possible for all of these values to be contained in �� � � � � i� �,
so i will be removed within the first i� � steps, contradicting i 	 live�G�.

The assignment of graphs to the corners of a simplex has the property that once p
becomes covered on one corner of S, it remains covered on the following corners of S:

Lemma 13: If p is uncovered in the graphs G i and Gj , where i � j, then p is uncovered
in each graph Gi�Gi��� � � � �Gj .

Proof: If p is covered in G� for some � between i and j, then p is uncovered in G ���

and covered in G� for some � between i and j. Since G��� and G� are on adjacent
vertices of the simplex, the sequences of graphs merged to construct them are of
the form H�� � � � �Hm� � � � �Hk and H�� � � � �H�

m� � � � �Hk, respectively, for some m.
Since p is uncovered in G��� and covered in G�, it must be that p is uncovered in Hm

and covered in H�
m. Notice, however, that H� is used in the construction of each

graph G��G���� � � � �Gj . This means that p is covered in each of these graphs, con-
tradicting the fact that p is uncovered in Gj .

Finally, because token placements in adjacent graphs on a simplex differ in at most
the movement of one token from one processor to an adjacent processor, we can use
the preceding lemma to prove the following:

Lemma 14: If p 	 live�Gi� and p 	 live�Gj�, then p has the same rank in live�Gi�
and live�Gj�.
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Proof: Assume without loss of generality that i � j. Since p 	 live�G i� and p 	
live�Gj�, Lemma 12 implies that p is uncovered in the graphs G i and Gj , and Lemma 13
implies that p is uncovered in each graph G i�Gi��� � � � �Gj . Since token placements in
adjacent graphs differ in at most the movement of one token from one processor to
an adjacent processor, and since p is uncovered in all of these graphs, this means that
the number of tokens on processors smaller than p is the same in all of these graphs.
Specifically, the sum

Pp��
��� m� of multiplicities of processors smaller than p is the

same in Gi�Gi��� � � � �Gj . In particular, Lemma 12 implies that this sum is the same
value s � p� � in Gi and Gj , so p has the same rank p� s in live�Gi� and live�Gj�.

7.2 Processor labeling

We now choose one processor from each set live�G� to label the vertex with graph G.
Given a vertex x � �x�� � � � � xk�, we define

plane�x� �
kX

i��

xi �mod k � ��

.

Lemma 15: If x and y are distinct vertices of the same simplex, then plane�x� 
�
plane�y�.

Proof: Since x and y are in the same simplex, we can write y � x � f� � � � � � fj
for some distinct unit vectors f�� � � � � fj and some � � j � k. If x � �x�� � � � � xk�

and y � �y�� � � � � yk�, then the sums
Pk

i�� xi and
Pk

i�� yi differ by exactly j. Since
� � j � k and since planes are defined as sums modulo k � �, we have plane�x� 
�
plane�y�.

We define a global processor labeling 
 as follows: given a vertex x labeled with a
graph G, we define 
 to map x to the processor having rank plane�x� in live�G�.

Lemma 16: The mapping 
 is a global processor labeling.

Proof: First, it is clear that 
 maps each vertex x labeled with a graph Gx to a pro-
cessor qx that is uncovered in Gx. Second, 
 maps distinct vertices of a simplex to
distinct processors. To see this, suppose that both x and y are labeled with p, and
let Gx and Gy be the graphs labeling x and y. We know that the rank of p in live�Gx�
is plane�x� and that the rank of p in live�Gy� is plane�y�, and we know that p has the
same rank in live�Gx� and live�Gy� by Lemma 14. Consequently, plane�x� � plane�y�,
contradicting Lemma 15.

We label the vertices of B with processors according to the processor labeling 
.

8 Ordered Pair Assignment

Finally, we assign ordered pairs �p�L� of processor ids and local communication graphs
to vertices of B. Given a vertex x labeled with processor p and graph G, we label x
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with the ordered pair �p�L� where L is the local communication graph of p in G. The
following result is a direct consequence of Lemmas 11 and 16. It says that the local
communication graphs of processors labeling the corners of a vertex are consistent with
a single global communication graph.

Lemma 17: Let q�� � � � � qk andL�� � � � �Lk be the processors and local communication
graphs labeling the vertices of a simplex. There is a global communication graph G
with the property that each qi is nonfaulty in G and has the local communication
graph Li in G.

9 Sperner’s Lemma

We now state Sperner’s Lemma, and use it to prove a lower bound on the number of
rounds required to solve k-set agreement.

Notice that the corners of B are points of the form c i � �N� � � � � N� �� � � � � �� with i
indices of value N for � � i � k. For example, c� � ��� � � � � ��, c� � �N� �� � � � � ��,
and ck � �N� � � � � N�. Informally, a Sperner coloring of B assigns a color to each
vertex so that each corner vertex ci is given a distinct color wi, each vertex on the edge
between ci and cj is given either wi or wj , and so on.

More formally, let S be a simplex and let F be a face of S. Any triangulation
of S induces a triangulation of F in the obvious way. Let T be a triangulation of S.
A Sperner coloring of T assigns a color to each vertex of T so that each corner of T
has a distinct color, and so that the vertices contained in a face F are colored with the
colors on the corners of F , for each face F of T . Sperner colorings have a remarkable
property: at least one simplex in the triangulation must be given all possible colors.

Lemma 18 (Sperner’s Lemma): If B is a triangulation of a k-simplex, then for any
Sperner coloring of B, there exists at least one k-simplex in B whose vertices are all
given distinct colors.

Let P be the protocol whose existence we assumed in the previous section. Define
a coloring �P of B as follows. Given a vertex x labeled with processor p and local
communication graphL, color x with the value v that P requires processor p to choose
when its local communication graph isL. This coloring is clearly well-defined, since P
is a protocol in which all processors chose an output value at the end of round r. We
will now expand the argument sketched in the introduction to show that � P is a Sperner
coloring.

We first prove a simple claim. Recall that B is the simplex whose vertices are the
corner vertices c�� � � � � ck, and that B is a triangulation of B. Let F be some face of B
not containing the corner ci, and let F denote the triangulation ofF induced by B. We
prove the following technical statement about vertices in F .

Claim 19: If x � �x�� � � � � xk� is a vertex of a face F not containing ci, then

1. if i � �, then x� � N ,

2. if � � i � k, then xi�� � xi, and
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3. if i � k, then xk � �.

Proof: Each vertex x of B can be expressed using barycentric coordinates with respect
to the corner vertices: that is, x � ��c�� � � ���kck, where � � �j � � for � � j � k

and
Pk

i�� �i � �. Since x is a vertex of a face F not containing the corner c i, it
follows that �i � �. We consider the three cases.
Case 1: i � �. Each corner c�� � � � � ck has the valueN in the first position. Since�� � �,
the value in the first position of ��c� � � � �� �kck is ��� � � � �� �k�N � N .
Case 2: � � i � k. Each corner c�� � � � � ci�� has � in positions i and i � �, and
each corner ci��� � � � � ck has N in positions i and i � �. Since �i � �, the linear
combination ��c� � � � � � �kck will have the same value ��i�� � � � � � �k�N in
positions i and i� �. Thus, xi � xi��.
Case 3: i � k. Each corner c�� � � � � ck�� has � in position k. Since �k � �, the value
in the kth position of ��c� � � � �� �kck is �. Thus, xk � �.

Lemma 20: If P is a protocol for k-set agreement tolerating f faults and halting
in r � bf�kc rounds, then �P is a Sperner coloring of B.

Proof: We must show that �P satisfies the two conditions of a Sperner coloring.
For the first condition, consider any corner vertex c i. Remember that ci was origi-

nally labeled with the 1-graph Fi describing a failure-free execution in which all pro-
cessors start with input vi, and that the local communication graph L labeling c i is a
subgraph ofFi. Since the k-set agreement problem requires that any value chosen by a
processor must be an input value of some processor, all processors must chose v i in Fi,
and it follows that the vertex ci must be colored with vi. This means that each corner ci
is colored with a distinct value vi.

For the second condition, consider any face F of B, and let us prove that vertices
in F are colored with the colors on the corners of F . Equivalently, suppose that c i is
not a corner of F , and let us prove that no vertex in F is colored with v i.

Consider the global communication graph G originally labeling x, and the graphs
H�� � � � �Hk used in the merge defining G. The definition of this merge says that the
input value labeling a node hp� �i in G is vm wherem is the maximumm such that hp� �i
is labeled with vm in Hm, or v� if no such m exists. Again, we consider three cases.
In each case, we show that no processor in G has the input value v i.

Suppose i � �. Since x� � N by Claim 19, we know that H� � F�, where the
input value of every processor is v�. By the definition of the merge operation, it follows
immediately that no processor in G can have input value v �.

Suppose � � i � k. Again, xi�� � xi by Claim 19. Now, Hi is the result
of applying 	i, the first xi operations of 	�vi�, to the graph Fi��. Similarly, Hi��

is the result of applying 	i��, the first xi�� operations of 	�vi���, to the graph Fi.
Since xi�� � xi, both 	i and 	i�� are of the same length, and it follows that 	i con-
tains an operation of the form change�p� v i� if and only if 	i�� contains an operation
of the form change�p� vi���. This implies that for any processor, either its input value
is vi�� in Hi and vi in Hi��, or its input value is vi in Hi and vi�� in Hi��. In both
cases, vi is not the input value of this processor.
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Suppose i � k. Since xk � � by Claim 19, we know that Hk � Fk��, where the
input value of every processor is vk��. By the definition of merge, it follows immedi-
ately that no processor in G can have input value vk.

Therefore, we have shown that if x is a vertex of a face F of B, and c i is not a
corner vertex of F , then the communication graph G corresponding to x contains no
processor with input value vi. Therefore, by the agreement condition, the value chosen
at this vertex cannot be vi, and it follows that x is assigned a color other than v i. So, x
must be colored by a color vj such that cj is a corner vertex of F . Since cj is colored vj ,
the second condition of Sperner’s Lemma holds. So �P is a Sperner coloring.

Sperner’s Lemma guarantees that some primitive simplex is colored by k � � dis-
tinct values, and this simplex corresponds to a global state in which k � � processors
choose k � � distinct values, contradicting the definition of k-set agreement:

Theorem 21: If n � f � k��, then no protocol for k-set agreement can halt in fewer
than bf�kc� � rounds.

Proof: Suppose P is a protocol for k-set agreement tolerating f faults and halting
in r � bf�kc rounds, and consider the corresponding Bermuda TriangleB. Lemma 20
says that �P is a Sperner coloring of B, so Sperner’s Lemma 18 says that there is a sim-
plex S whose vertices are colored with k �� distinct values v�� � � � � vk. Let q�� � � � � qk
andL�� � � � �Lk be the processors and local communication graphs labeling the corners
of S. By Lemma 17, there exists a communication graph G in which q i is nonfaulty
and has local communication graph L i. This means that G is a time r global commu-
nication graph of P in which each qi must choose the value vi. In other words, k � �
processors must choose k�� distinct values, contradicting the fact that P solves k-set
agreement in r rounds.

10 Protocol

An optimal protocol P for k-set agreement is given in Figure 13. In this protocol,
processors repeatedly broadcast input values and keep track of the least input value
received in a local variable best. Initially, a processor sets best to its own input value.
In each of the next bf�kc � � rounds, the processor broadcasts the value of best and
then sets best to the smallest value received in that round from any processor (including
itself). In the end, it chooses the value of best as its output value.

To prove that P is an optimal protocol, we must prove that, in every execution
of P , processors halt in r � bf�kc� � rounds, every processor’s output value is some
processor’s input value, and the set of output values chosen has size at most k. The first
two statements follow immediately from the text of the protocol, so we need only prove
the third. For each time t and processor p, let bestp�t be the value of best held by p at
time t. For each time t, let Best�t� be the set of values bestq��t� � � � � bestq��t where the
processors q�� � � � � q� are the processors active through time t. Notice that Best��� is
the set of input values, and that Best�r� is the set of chosen output values. Our first
observation is that the set Best�t� never increases from one round to the next.

Lemma 22: Best�t�  Best�t� �� for all times t.
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best � input value;

for each round � through bf�kc� � do
broadcast best;
receive values b�� � � � � b� from other processors;
best � minfb�� � � � � b�g;

choose best.

Figure 13: An optimal protocol P for k-set agreement.

Proof: If b 	 Best�t � ��, then b � bestp�t�� for some processor p active through
round t � �. Since bestp�t�� is the minimum of the values b�� � � � � b� sent to p by
processors during round t � �, we know that b � bestq�t for some processor q that is
active through round t. Consequently, b 	 Best�t�.

We can use this observation to prove that the only executions in which many output
values are chosen are executions in which many processors fail. We say that a proces-
sor p fails before time t if there is a processor q to which p sends no message in round t
(and p may fail to send to q in earlier rounds as well).

Lemma 23: If jBest�t�j � d� �, then at least dt processors fail before time t.

Proof: We proceed by induction on t. The case of t � � is immediate, so suppose
that t � � and that the induction hypothesis holds for t � �. Since jBest�t�j � d � �
and since Best�t� � Best�t � �� by Lemma 22, it follows that jBest�t � ��j � d � �,
and the induction hypothesis for t�� implies that there is a set S of d�t��� processors
that fail before time t��. It is enough to show that there are an additional d processors
not contained in S that fail before time t.

Let b�� � � � � bd be the values of Best�t� written in increasing order. Let q be a pro-
cessor with bestq�t set to the largest value bd at time t, and for each value bi let qi be a
processor that sent bi in round t � �. The processors q�� � � � � qd are distinct since the
values b�� � � � � bd are distinct, and these processors do not fail before time t � � since
they send a message in round t, so they are not contained in S. On the other hand, the
processors q�� � � � � qd�� sending the small values b�� � � � � bd�� in round t�� clearly did
not send their values to the processor q setting bestq�t to the large value bd, or q would
have set bestq�t to a smaller value. Consequently, these d processors q�� � � � � qd�� fail
in round t and hence fail before time t.

Since Best�r� is the set of output values chosen by processors at the end of round
r � bf�kc� �, if k �� output values are chosen, then Lemma 23 says that at least kr
processors fail, which is impossible since f � kr. Consequently, the set of output
values chosen has size at most k, as we are done.

Theorem 24: The protocol P solves k-set agreement in bf�kc� � rounds.
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