
Brief Announcement:
Model Checking Transactional Memory with Spin

John O’Leary
Intel

john.w.oleary@intel.com

Bratin Saha
Intel

bratin.saha@intel.com

Mark R. Tuttle
Intel

tuttle@acm.org

Abstract: We used the Spin model checker to show that
Intel’s implementation of software transactional memory is
correct, and built a preprocessor to accelerate the perfor-
mance of Spin on parameterized models of shared-memory
protocols.

Categories and Subject Descriptors: B.6.3 [Logic De-
sign]: Design Aids—Verification
General Terms: Algorithms, Design, Verification
Keywords: Transactional memory, Model checking, Spin

Transactional memory is a programming abstraction for multi-
threaded programming that provides thread synchronization
without requiring the explicit use of locks. Locks are noto-
riously difficult to use correctly: They can lead to deadlock,
priority inversion, and subtle errors, and they can impede
compositionality. To the programmer, transactional mem-
ory has a very simple interface: Every block of code labeled
“atomic” is executed as an “atomic transaction”without any
interferences from other threads. To the implementer, trans-
actional memory is an introduction to the fascinating and
subtle world of shared-memory protocols.

Our goal is to learn to model check shared-memory algo-
rithms in general, and transactional memory in particular.
We take the Intel McRT STM [1] implementation of transac-
tional memory as our example, which is itself an interesting,
innovative, and subtle shared-memory protocol. We choose
Spin [4] as our model checker because it is engineered for
high performance, it is famous for its partial order reduc-
tion algorithm which has the effect of reducing the branch-
ing factor of the transition graph, and its input language,
Promela, is a natural language for describing the sequen-
tial natural of each thread in a concurrent program. Spin
assumes processes communicate through message channels,
but it does have global variables, and what is shared mem-
ory but a collection of global variables? The use of global
variables, however, decimates the performance of the partial
order reduction algorithm, which was the whole reason for
choosing Spin in the first place.

This paper makes two contributions:

Copyright is held by the author/owner(s).
PODC’08, August 18–21, 2008, Toronto, Ontario, Canada.
ACM 978-1-59593-989-0/08/08.

1. The validation of an industrial implementation
of transactional memory. We used the Spin model
checker [4] to prove the following: McRT STM guar-
antees the serializability of every execution of every
purely-transactional program consisting of two threads
each running one transaction consisting of three reads
or writes. (By purely-transactional, we mean that ev-
ery read and write occurs within a transaction.) Our
model of McRT STM is very close to the C++ code
used in the actual McRT STM implementation, in con-
trast to other applications of model checking to trans-
actional memory that use very abstract models of the
implementations [2, 3]. Our model of program execu-
tion is very efficient, in that checking the correctness of
just a single program described above takes almost a
minute (45 seconds), but we can check the correctness
of all 14,400 such programs in just over an hour (1:06).

2. A tool to optimize models of shared-memory
algorithms in Spin. We have gained a deeper under-
standing of how to model shared-memory algorithms
in Spin, and we have built a Spin preprocessor spp

that captures some of this insight. The preproces-
sor rewrites our Spin code in a way that lets the Spin
compiler apply its optimizations more effectively and
dramatically improves the performance of the result-
ing model checking task. The preprocessor allows us
to write the fully-parametrized models any good com-
puter scientist would be inclined to write — with pa-
rameters for the number of threads, length of trans-
actions, number of memory locations, etc. — but to
generate for any particular instantiation of these pa-
rameters a model that runs much faster under Spin
than the parametrized model itself.

[1] A. Adl-Tabatabai et al. Compiler and runtime support
for efficient software transactional memory. In Proceed-
ings of the ACM Conference on Programming Language
Design and Implementation, pages 26–37, June 2006.

[2] R. Alur, K. McMillan, and D. Peled. Model-checking of
correctness conditions for concurrent objects. In Proceed-
ings of the IEEE Symposium on Logic in Computer Sci-
ence, pages 219–228, July 1996.

[3] A. Cohen, J. O’Leary, A. Pnueli, M. R. Tuttle, and
L. Zuck. Verifying correctness of transactional memories.
In M. Sheeran and J. Baumgartner, editors, Proceedings
of the Symposium on Formal Methods in Computer Aided
Design, pages 37–44, November 2007.

[4] G. Holzman. The Spin Model Checker: Primer and Ref-
erence Manual. Addison-Wesley, 2004.


