
Model checking transactional memory with Spin

John O’Leary
Intel

john.w.oleary@intel.com

Bratin Saha
Intel

bratin.saha@intel.com

Mark R. Tuttle
Intel

tuttle@acm.org

Abstract

We used the Spin model checker to show that Intel’s
implementation of software transactional memory is correct.
Transactional memory makes it possible to write properly-
synchronized multi-threaded programs without the explicit
use of locks. We describe our model of Intel’s implementa-
tion, our experience with Spin, what we have shown, and
what obstacles remain to showing more.

1. Introduction

Transactional memory [17], [36], [26] is a program-
ming abstraction that makes it possible to write properly-
synchronized multi-threaded programs without the explicit
use of locks, and without the problems that come with
locks [17]. Transactional memory provides a construct
atomic{block}, where block is any block of program
code, that makes the execution of block appear atomic
relative to individual steps of other threads in the program,
much like transactions in a database system.

The privatization problem [26, p. 22] illustrated in Fig-
ure 1 shows how tricky transactional memory implementa-
tions can be. Thread A atomically removes the element at
the head of a list, and then reads the value of this element
three times. Thread B atomically increments the value of
every element in the list.

From the programmer’s point of view, this code is elegant
and properly synchronized. Thread A can safely read the
value of the removed element outside the atomic block
because A and B cannot access this element concurrently.
Either A removes this element before B has a chance to
increment its value, or B increments its value before A
removes the element. In either case, B will never attempt
to access the element after A has removed it.

From the implementer’s point of view, however, care is
required. Suppose the threads are allowed to update the lists
in place [1], [15], and consider the following execution.
Thread B starts executing and stores the pointer to the head
of the list in a local variable. Thread A removes the head of
the list and reads the value 0 from the former head. Thread B
then uses the stale pointer to the former head of the list and
increments every list element. Thread A reads the value 1
from the former head. Thread B realizes that the list has

changed, and aborts after undoing its effects and resetting
the list elements to 0. Finally, thread A reads the value 0
from the former head. At this point, A has made a private
copy of the head of the list, yet has seen the value of this
private copy change twice from 0 to 1 to 0.

What went wrong? Who should the specification of trans-
actional memory blame for this unexpected behavior? Is
the implementation wrong because an illegal (intermediate)
state was seen, or is the program wrong because a memory
location was accessed both inside and outside an atomic
block? This is the kind of question we would like to be
able to answer. We want to specify the correctness of
transactional memory, and then to prove the correctness of
transactional memory implementations.

This paper describes our verification of Intel’s implemen-
tation of software transactional memory [34]. This imple-
mentation goes by the name McRT STM because it is part
of an experimental Many-core Run Time environment for
terascale computing being built at Intel [33]. McRT STM
was released to the general public at the Intel Developer
Forum in 2007 and binaries are available for download at
whatif.intel.com.

This paper makes two contributions:
1) The validation of an industrial implementation

of transactional memory. We used the Spin model
checker [18] to prove the following: McRT STM
guarantees the serializability of every execution of
every purely-transactional program consisting of two
threads each running one transaction consisting of
three reads or writes. (An execution is serializable
if transactions appear to be executed without overlap
in a sequential order, and an execution is purely-
transactional if every read and write occurs within
a transaction.) Our model of McRT STM is very
close to the C++ code used in the actual McRT STM
implementation, in contrast to other applications of
model checking to transactional memory that use very
abstract models of the implementations. Our model
of programs running on top of McRT STM is very
efficient, in that checking the correctness of just a
single program described above takes almost a minute
(45 seconds), but we can check the correctness of all
such programs (tens of thousands) in just over an hour
(1:06).

A: /* remove list head */
atomic {
result := head;
if head != null then

head := head.next;
}
a := result.value;
b := result.value;
c := result.value;

B: /* increment list elements */
atomic {
node := head;
while (node != null) {

node.value++;
node := node.head;

}

Figure 1. The privatization problem.

2) A tool to optimize models of shared memory
algorithms in Spin. We have gained a deeper under-
standing of how to model shared memory algorithms
in Spin, and we have built a Spin preprocessor spp
that captures some of this insight. The preprocessor
rewrites our Spin code in a way that lets the Spin
compiler apply its optimizations more effectively and
dramatically improves the performance of the result-
ing model checking task. The preprocessor allows
us to write the fully-parametrized models any good
computer scientist would be inclined to write —
with parameters for the number of threads, length of
transactions, number of memory locations, etc. — but
to generate for any particular instantiation of these
parameters a model that runs much faster under Spin
than the parametrized model itself.

We would like to be able to check larger configurations
with more threads running longer programs, although expe-
rience shows that small configurations are often sufficient,
since bugs found with large configurations can usually
be demonstrated on small configurations after sufficient
thought. Recent advances in parametrized verification [4],
[22], [37] might allow us to reduce the problem of checking
large configurations with n threads to checking small con-
figurations like those we can check now. A recent theoretical
result [10] reduces the problem of checking a deferred-
update implementation of transactional memory with n
threads to checking just two threads accessing two variables.
Unfortunately, that result does not apply to our work:
McRT uses update-in-place which is harder to validate than
deferred-update, since updates by an aborting transaction can
be visible to other transactions if the aborting transaction
does not clean up properly. Coming work [11] describes an
extension of this reduction to update-in-place and applies it
to an abstract model of McRT.

We would also like to check programs with non-
transactional loads and stores, like the code in Figure 1
illustrating the privatization problem. We note that most im-
plementations do not allow loads and stores to occur outside
of a transaction, since if a rogue thread can scribble all over
memory outside a transaction and outside the control of a
transactional memory implementation, then what correctness

condition could possibly hold? The McRT STM architects
have an idea, however, and we would like to extend our
work to check their notion of correctness.

The remainder of the paper is organized as follows. We
begin with a survey of the related work the Section 2, then
present the McRT STM implementation in Section 3 and
our Spin model in Section 4. We describe our experience
with Spin and our Spin preprocessor spp in Section 5 along
with some ideas for extending our work, and end with some
concluding remarks in Section 6.

2. Related work

Transactional memory (TM) and software transactional
memory (STM) were introduced by Herlihy and Moss [17]
and Shavit and Touitou [36]. A number of high-performance
STM implementations have been developed [34], [7], [16],
[9], leading researchers to propose adding transactions to
languages as programming language constructs [13], [1],
[15], [38]. One approach has been to integrate STM into
a language with a powerful type system, and to use type
inference supported by the type system to reason about the
correctness of transactional programs [14], [32]. McRT STM
targets languages like C and Java without such powerful type
systems, and we believe this is the first paper to address the
correctness of STM implementations for such languages.

Despite the popularity of transactional memory, there is
surprisingly little prior work on formal verification of trans-
actional memory implementations. Alur et al [2] established
some important theoretical results on the complexity of
checking serializability, linearizability, and sequential con-
sistency. Cohen et al [6] gave a practical method to verify the
correctness of transactional memory implementations using
the TLA+ [23] model checker, and verified several imple-
mentations from the literature. Their correctness conditions
addressed not just serializability but also specific notions of
conflicts as characterized by Scott [35]. Their work models
transactional memory quite abstractly, however, whereas we
try to model McRT STM at the same level of abstraction as
the implementation itself to find as many bugs as possible.
Other interesting approaches to verifying shared memory
correctness include the following. At Sun [8], researchers

have used the PVS theorem prover to verify the correct-
ness of a lock-free queue implementation by Michael and
Scott [31]. At Princeton and Intel [3], researchers have
proposed a run time validation methodology for ensuring
the end-to-end correctness of transactional memory imple-
mentations. At Sun and Stanford [30], researchers have
used an axiomatic formulation of a memory model with
randomized testing to find bugs in a transactional memory
implementation. Finally, work at EPFL gives a correctness
condition intended to rule out bugs like the privatization
problem given above [12], and gives a set of conditions
under which the verification problem reduces to two threads
and two variables [10], [11].

3. McRT STM implementation

The McRT STM implementation came to us in the form
of detailed C++ pseudocode along with easy access to the
implementers (see Figure 2 for a representative pseudocode
fragment). We modeled the pseudocode as exactly as we
could, even down to modeling pointer dereferencing with
array indexing. As usual with memory protocols like cache
coherence protocols, we modeled only reads and writes
to single blocks of memory (ignoring unaligned accesses
and multi-block accesses), and modeled only reading and
writing the whole block (ignoring partial accesses such as
two separate writes to the upper and lower halves of a
memory block). We assumed a simple conflict manager that
arbitrarily chooses one of two conflicting transactions to
abort.

The fundamental idea in this protocol is to use timestamps
to detect conflicts. Timestamps are everywhere:

1) Global timestamp: There is a single global timestamp
that we denote global.ts that advances whenever
a transaction tries to commit or abort. When this
timestamp changes, it is a hint that memory may have
changed, so transactions should proceed with caution.

2) Local timestamp: Each transaction has a local times-
tamp that we denote my.ts when the identity my of
the transaction is understood. It records the transaction
start time (the global timestamp at transaction start). It
is read by other transactions when they commit, so it is
global data, and it is stored in a transaction descriptor
along with other information like the transaction read
set, write set, and undo log.

3) Memory block timestamp: Each memory block has a
timestamp that we denote blk.ts when the identity
blk of the memory block is understood. It records the
commit time of the last transaction writing the block.
It is stored in a transaction record along with a lock
that must be held to write the block.

In addition to timestamps, the protocol depends on two
design rules.

The first design rule is that no transaction — not even
aborting transactions — ever reads inconsistent data (similar
to the correctness condition opacity proposed by Guerraoui
and Kapalka [12]). This requires frequent checks of the
transaction read set to validate that the read set is still valid.
This validation is performed by a procedure

validate() = {
ts := global.ts
for each blk in my.readSet {
confirm blk is locked only by me
confirm blk.ts <= my.ts
abort if either confirmation fails

}
my.ts := ts

}

This validation confirms that the read set has not changed
since transaction start, since the local timestamp my.ts
records the transaction start time and the memory block
timestamp blk.ts records the commit time of the last
transaction to write the block blk. In fact, since the read
set has not changed, the transaction would generate the
same result if it started now, so validation updates the local
timestamp my.ts and pretends as if it did.

The second design rule is that no transaction commit
completes until all conflicting transactions have had a chance
to finish aborting. This allows conflicting transactions to
undo any conflicting changes made by the transactions, and
therefore avoids the linked list privatization bug illustrated
in the introduction. The commit code calls a quiescence
procedure

quiesce(ts) = {
for each active transaction txn
block while txn.ts < ts & txn active

}

to wait for transactions conflicting with ts to terminate.
Each conflicting transaction will validate during commit,
this validation will fail and abort the transaction, and the
transaction will undo its changes during abort.

Commit is simple for a read-only transaction: it just sets
its local timestamp to 0 to indicate to other transactions that
it is no longer active. A writing transaction does a fetch-
and-increment on the global timestamp, validates its read
set if the global timestamp is larger than its local timestamp
(indicating that memory may have changed since the start of
the transaction), and sets the timestamp of every block in its
write set to the global timestamp. The validation step may
fail, in which case validation causes the transaction to abort
and restart. If not, the transaction sets its local timestamp
to 0 and waits for quiescence.

Abort is straightforward. An aborting transaction undoes
changes to memory, and sets the timestamp of every block in
its write set to the global timestamp. It advances the global

timestamp and sets its local timestamp to 0.
Both read and write have a fast path and a slow path, and

fall back to the slow path at any hint of conflict.
The read fast path just reads the memory block, adds

the block to the read set, and returns the value of the
memory block, unless one of two things happens: If the
block is locked for writing by another transaction or if the
timestamp for the block is higher than the transaction’s local
timestamp (indicating the block might have changed since
the transaction started), the read falls back to the slow path.
The slow path just loops reading the memory block until
a consistent value can be read, but since we assume the
conflict handler aborts if an inconsistent value is found, this
loop terminates quickly.

A write must acquire the write lock for the block, record
the current value of the block in the undo log, and write
the new value to the block. Acquiring the lock can follow a
fast path or a slow path. The fast path falls back to the slow
path if the lock is held by another transaction, if the block
timestamp is greater than the transaction’s local timestamp
(indicating that the block may have changed since the start of
the transaction), or a compare-and-swap fails to acquire the
write lock for the block. In this case, because we assume the
conflict handler aborts in the presence of conflict, the slow
path reduces to aborting if the lock continues to be held by
another transaction, if validation of the read set fails, or if a
second attempt to acquire the lock with a compare-and-swap
fails.

4. McRT STM model

Our model of McRT STM consists of n program threads,
n McRT threads, and shared memory. Our model is an
invocation/response model in which a program thread sends
an invocation to a corresponding McRT thread, and waits for
a response. It is the McRT thread that maintains transaction
state (eg, the transaction’s local timestamp) and reads and
writes shared memory on behalf of the program thread. A
program thread sends a read or write invocation to its McRT
thread, and the McRT thread responds with a read or write
response, or perhaps with an abort response. A program
thread begins and ends a transaction by sending a start or
commit invocation, and the McRT thread responds with a
start or commit response, or perhaps with an abort response.

In Spin, we represent each McRT thread as a separate
Spin process, but we encapsulate all of the program threads
into a single, nondeterministic environment process that en-
gages in the invocation/response interaction with the McRT
threads on behalf of the program threads. Our model of the
environment has several properties that are crucial to the
performance we achieve with Spin.

First, the environment generates on-the-fly the programs
being run by the program threads. If the ith instruction in the
program is a read, the environment sends a read invocation

to the McRT thread, and records the response when it
arrives. At this point, the environment nondeterministically
chooses an instruction for the i+1st instruction, if it has not
already been determined, and continues. One of the early
performance mistakes we made was generating complete
programs before starting to run them.

Second, the environment simulates execution of each
program thread, as just described, including aborts. If the
environment receives an abort in response to a request
on behalf of program thread i, the environment resets the
thread’s program counter to the start of the transaction,
erases the history of results received so far, and restarts the
transaction with a start invocation. We note that McRT STM
actually implements an abort using pairs of setjmp/longjmp
instructions to reset the program state, and this is how we
model the semantics of a C++ longjmp instruction. One of
the early performance mistakes we made was to regenerate
the transaction from scratch after an abort, rather than simply
restarting the already partially-generated transaction.

Finally, when all program threads have terminated, the
environment confirms serializability of the execution by
finding a transaction ordering consistent with the transaction
results and shared memory. Finding the ordering is easy,
because we instrument the commit response from a McRT
thread with an ordering hint that allows the McRT thread to
use state information (eg, a timestamp) to indicate where in
the total ordering the committing transaction should appear.
Verification that this total ordering is a serialization can be
done in a single state transition in Spin.

For the McRT threads themselves, we have said several
times that we modeled the McRT STM pseudocode “ex-
actly,” at least as exactly as possible, even down to modeling
pointer dereferencing. The least exact match between the
pseudocode and our model is the abort procedure illus-
trated in Figure 2, but even here it is easy do block-by-
block pattern matching between the pseudocode and our
model and see that our model quite close to the code.
Remember that the transaction’s local timestamp is stored
in a data structure called the “transaction descriptor” that
is identified by a pointer to the structure in memory. In
our model, the pointer txnDescPtr is dereferenced by
the expression txnDesc(txnDescPtr) which has the
effect of mapping the pointer to an element of an array
of transaction descriptors. The most dramatic difference
between the pseudocode and Spin code is in the longjmp
semantics: Where the pseudocode, after a suitable back-off
process, does a longjmp to reset the state of the program
thread, we reinitialize the transaction’s transaction descriptor
and let the environment model the resetting of program state.

5. McRT STM correctness

Our main result is the following theorem:

STMTxnAbort(TxnDesc* txnDesc, uint32 reason) {

for ((addr, val, size) in txnDesc->undoLog) {
if (addr is on dead stack frames) continue;
switch(size) {

case 4: *(uint32*)addr = val; break;
...

}
}

if ((token = txnDesc->token) == 0)
token = lockedIncrement(globalTimeStamp);

for (txnRecPtr in txnDesc->writeSet)

*txnRecPtr = token;

txnDesc->localTimeStamp = 0;

backoff();
abortInternal(txnDesc); /* longjmp */

}

inline abortTransaction(txnDescPtr, ...) {

foreach adr in 0..(num_addresses)-1 {
if
:: txnDesc(txnDescPtr).undoLog[adr] != null_data ->

memory[adr] = txnDesc(txnDescPtr).undoLog[adr];
:: else

fi
};

fetch_and_incr (globalTimeStamp,token,token_new);

foreach blk in 0..(num_memory_blocks)-1 {
if
:: txnDesc(txnDescPtr).writeSet[blk] ->

txnRecHeap[blk] = token_new;
:: else

fi
};

/* reset transaction descriptor for restart */
initTxnDesc(txnDesc(txnDescPtr),...);

txnDesc(txnDescPtr).localTimeStamp = 0;

}

Figure 2. The abort procedure described in detailed pseudocode by the protocol architects on the left and in Spin
on the right, formatted to simplify block-by-block comparison of the two representations.

Theorem 1: McRT STM guarantees the serializability
of every execution of every purely-transactional program
consisting of two threads each running one transaction
consisting of at most three reads or writes. (By purely-
transactional, we mean that every read and write occurs
within a transaction.)

Remark 2: Spin validates Theorem 1 using 1:06 hours
and 3.8G memory on an IBM IntelliStation Z Pro worksta-
tion running SUSE Linux 2.6.5 with a 2.6Ghz Intel Xeon
processor.

Achieving the performance described in Remark 2 re-
quired many attempts at modeling shared memory protocols
in Spin. It took several approaches to protocol modeling
before we could model check programs of length two with-
out blowing through eight gigabytes of memory, let alone
programs of length three. To see just how successful our
model of the environment is, note that there are over 10,000
programs consisting of two transactions of length three. Spin
takes 45 seconds to model check all executions of a single
program, yet with our model of the environment, Spin can
model check all executions of all programs in just over an
hour.

Specifying the notion of serializability used in the state-
ment of Theorem 1 (the order in which transactions should
be serialized) required nontrivial thought and several tries to
get right. We began trying to prove strict serializability, as
we had just proven that Dynamic STM [16] by Herlihy et
al was strictly serializable as a warm-up exercise, but Spin
demonstrated that McRT STM is not strictly serializable. We
tried following the advice of the architects to use validation

order, meaning to order transactions by the timestamp of
the last successful validation to the read set, but this did not
quite work. Finally, we chose block timestamp order which
orders transactions by the highest timestamp ready or written
by a transaction (remember that each block of memory has
a timestamp). With the added twist that if two transactions
see the same maximum timestamp, the writing transaction
is ordered first, this worked. In the future, in addition to
serializability, we would like to specify and validate the
protocol design rules, such as the rule that no transaction
— even an aborting transaction — sees inconsistent data.

There are many extensions that would be interesting to
explore. One extension would be to allow reads and writes to
appear outside of a transaction. What correctness condition
could possibly hold when reads and writes are no longer
under the control of the transactional memory implementa-
tion? This is interesting work, primarily because it requires
formalizing the potentially subtle correctness conditions the
protocol architects have in mind.

Another extension would be to model check larger con-
figurations with more threads running longer programs.
Performance is the primary obstacle to checking larger
configurations. This leads to the question of why we chose
Spin as our model checker, what problems we encountered,
and how we addressed them.

5.1. Spin

Explicit state model checkers still seem to be the most
effective tools for model checking protocols. There are many
symbolic approaches to model checking that have been

successfully applied to hardware (see [5] for a survey), but
experience shows that symbolic representations like binary
decision diagrams (BDDs) that behave well on hardware
models tend to blow up on protocol models (especially the
highly nondeterministic protocols that appear in distributed
computing).

Explicit state model checkers, however, are known to
suffer from a host of problems ranging from storing the
reachable state space (often solved with state hashing) to
redundant interleavings (often solved with partial order
reduction). While there are many experimental implementa-
tions of these optimizations, there is no single public domain
model checker that implements all or even a healthy subset
of them.

The big names in public-domain explicit-state model
checking are currently TLA+ [23] and the related
+CAL [24], [25], Murphi [21], Spin [18], and I/O Au-
tomata [29], [27] and the associated IOA toolkit [28]. TLA+
and +CAL have been used effectively in the industry when
the protocol is small enough and modeled abstractly enough
to fit within the model checker’s capacity, but performance
is an issue. Murphi and IOA also have a strong track
record, especially with message-passing protocols, but the
guarded-command style they use for modeling protocols
is cumbersome for modeling software and shared-memory
protocols. Atomic actions in message-passing protocols are
relatively independent events typically triggered by message
receipt. Atomic actions in shared memory protocols are
typically sequentially ordered events involving a read or
write of shared memory, and multi-threaded software is typ-
ically described in terms of sequential code making nested
method invocations. While all of this can be encoded in a
guarded-command style [25] by explicitly modeling program
counters, loop index variables, run time execution stacks,
etc, doing so by hand for any reasonably-sized program is
cumbersome and error-prone.

Spin has a simple procedural language making it easy
to model sequences of atomic actions, and, in particular,
shared-memory software. It is a highly-engineered tool most
famous for its implementation of bit-state hashing (reducing
the space needed to store the reachable states) and partial
order reduction (reducing the number of interleavings of
atomic actions that must be examined). For these reasons,
we were led to try Spin on this application, but ran into
several problems.

5.2. Timestamps

The first problem is the fact that McRT STM uses
timestamps everywhere. Timestamps are known to be the
kiss of death for model checking since they are essentially
unbounded counters that cause the state space to explode.
In the case of McRT STM, consider a transaction that starts
but is immediately aborted by the system before reading or

writing any memory location. Aborting the transaction has
the effect of incrementing the global timestamp but leaving
all other timestamps unchanged. The two states (before
starting and after aborting the transaction) differ only in the
global timestamp, and the global timestamp is larger than
all other timestamps in both states. Since the only operation
on timestamps is comparison for order, the two states are
essentially equivalent states and should be identified. We
have implemented a timestamp abstraction in Spin that we
hope will ameliorate this problem. We would like to make
this abstraction a part of Spin itself, but extending the highly-
optimized Spin code base does not look easy.

5.3. Interleavings

The second problem is a very steep performance curve
that remains even after months of modeling. With our
current model, checking a configuration of 2 threads running
programs of length 2 takes less than a minute (22 seconds), 2
threads running programs of length 3 takes just over an hour
(1:06), and 2 threads running programs of length 4 burns
through eight gigabytes of memory in four hours without
terminating.

The problem is clearly the length of the executions (450
transitions long for 2 threads running programs of length 3)
and the number of executions resulting from the interleaving
semantics. We made some mistakes that contribute to this
problem. For example, it was a mistake to have explicit start
and commit invocations in our invocation/response model of
the environment, and we should instead have piggy-backed
these invocations on the first and last memory operations in
the transaction.

But Spin itself is famous for dealing with both of these
problems using techniques called statement merging and par-
tial order reduction. The problem is that Spin’s implemen-
tation is so conservative that the use of iteration and global
variables in the model inhibits statement merging and partial
order reduction, respectively. Unfortunately, parameterized
models depend on iteration, and shared memory is nothing
but a large collection of global variables, so we do not benefit
from Spin’s highly-engineered optimizations.

5.4. Spin preprocessor

To overcome these problems, we wrote a Spin prepro-
cessor called spp that mechanically transforms our fully-
parameterized model into instantiated models that Spin can
run more efficiently.

First consider statement merging. Statement merging
makes use of the observation that a linear sequence of state
transitions that access only local variables can be replaced
with a single state transition. Our problem was that in Spin’s
conservative implementation, statement merging does not

extend over alternation or looping constructs [19], meaning
that given two equivalent code sequences

memory[0] = 0; memory[1] = 0;
memory[2] = 0; memory[3] = 0;

and

adr = 0;
do
:: adr < num_adrs -> memory[adr] = 0
:: else -> break

od;

with num_adrs is set to 4, statement merging will apply to
the first sequence but not the second. Unfortunately, when
writing a general, parametrized model, the second code
sequence is what you want to write.

We introduced a construct foreach var in vals
{body} which we can rewrite with spp as straight-line
code consisting of, for each value v in the list of values
vals, a copy of body with the variable var textually
replaced by the value v. The list of value vals can be given
as a range expr1..expr2 or list expr1,expr2,...
where the expressions must evaluate to constants via ele-
mentary arithmetic and Boolean operations. Simply adding
this construct to the language improved the performance of
our already highly-optimized model by 40-50% depending
on the configuration.

This construct makes it easier to write parametrized
models in Spin. With this goal in mind, the complete list
of constructs added are

• foreach var in vals {body}: execute body
with var set to each value in vals.

• forsome var in vals {body}: execute body
with var set to some value in vals.

• forall var in vals (expr): the conjunction
of expr with var taking on values in vals.

• exists var in vals (expr): the disjunction
of expr with var taking on values in vals.

Now consider partial order reduction. The problem
is that the use of global variables inhibits partial or-
der reduction [20], and shared memory is the ultimate
global variable. Yet if we examine traces of our model,
it is easy to see that individual processes are simply
performing blocks or sequences of steps of the form
global,local,local,.... where the first step ac-
cesses a global variable and the remaining only local vari-
ables. It seems possible to rewrite our model so that each
process is simply a sequence of such blocks, and that Spin
can execute each such block as a single atomic transition.
We hope to implement this in the near future.

6. Conclusion

We have demonstrated that model checking an industrial
transactional memory implementation is possible at a level
of abstraction much closer to actual implementation than
normally occurs in the protocol verification literature. We
have achieved the first milestone — model checking small
configurations of purely transactional programs — in what
promises to be an exciting sequence of milestones, including
specifying and verifying the correctness of programs with
nontransactional reads and writes. We have described a Spin
preprocessor spp that improves the performance of our Spin
model, and makes it possible (or at least easier) to write a
general, parametrized model of a protocol that performs well
under Spin. We are pleased with our experience with Spin,
but we are eager to try other model checking technologies
like SMT-based bounded model checking as they become
available.

Acknowledgments: We thank three anonymous referees for
many helpful questions and comments.

References

[1] A.-R. Adl-Tabatabai, B. T. Lewis, V. S. Menon, B. R. Murphy,
B. Saha, and T. Shpeisman, “Compiler and runtime support
for efficient software transactional memory,” in Proceedings
of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Jun. 2006, pp. 26 – 37.

[2] R. Alur, K. L. McMillan, and D. Peled, “Model-checking
of correctness conditions for concurrent objects,” Information
and Computation, vol. 160, no. 1-2, pp. 167–188, 2000, a
preliminary version appeared in LICS’96.

[3] K. Chen, S. Malik, and P. Patra, “Runtime validation of
transactional memory systems,” in International Symposium
on Quality Electronic Design, Mar. 2008.

[4] C.-T. Chou, P. K. Mannava, and S. Park, “A simple method
for parameterized verification of cache coherence protocols,”
in Fourth International Symposium on Formal Methods in
Computer-Aided Design (FMCAD), ser. LNCS, vol. 3312.
Springer, 2004, pp. 382–398.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Check-
ing. MIT Press, 2000.

[6] A. Cohen, J. O’Leary, A. Pnueli, M. R. Tuttle, and L. Zuck,
“Verifying correctness of transactional memories,” in Seventh
International Symposium on Formal Methods in Computer-
Aided Design (FMCAD), M. Sheeran and J. Baumgartner,
Eds., Nov. 2007, pp. 37–44.

[7] D. Dice, O. Shalev, and N. Shavit, “Transactional Locking
II,” in Proceedings of the 20th International Symposium on
Distributed Computing (DISC), Sep. 2006, pp. 194–208.

[8] S. Doherty, L. Groves, V. Luchangco, and M. Moir, “Formal
verification of a practical lock-free queue algorithm,” in
Proceedings of the 24th International Conference on Formal
Techniques for Networked and Distributed Systems (FORTE),
Sep. 2004, pp. 97–114.

[9] R. Ennals, “Software transactional memory should
not be obstruction-free,” 2005, http://www.cambridge.
intel-research.net/ rennals/notlockfree.pdf. [Online]. Avail-
able: http://www.cambridge.intel-research.net/ rennals/
notlockfree.pdf”

[10] R. Guerraoui, T. A. Henzinger, B. Jobstmann, and V. Singh,
“Model checking transactional memories,” in Proceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Jun. 2008.

[11] R. Guerraoui, T. A. Henzinger, and V. Singh, “Software trans-
actional memory on relaxed memory models,” in Proceedings
of the 21th International Conference on Computer Aided
Verification (CAV), Jul. 2009.

[12] R. Guerraoui and M. Kapalka, “On the correctness of trans-
actional memory,” in Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming (PPoPP), Feb. 2008, pp. 175–184.

[13] T. Harris and K. Fraser, “Language support for lightweight
transactions,” in Proceedings of the 18th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), Oct. 2003, pp.
388–402.

[14] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy, “Com-
posable memory transactions,” in Proceedings of the ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), Jun. 2005, pp. 48–60.

[15] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi, “Optimizing
memory transactions,” in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation (PLDI), Jun. 2006, pp. 14 – 25.

[16] M. Herlihy, V. Luchangco, M. Moir, and I. William
N. Scherer, “Software transactional memory for dynamic-
sized data structures,” in Proceedings of the Twenty-Second
Annual Symposium on Principles of Distributed Computing
(PODC), Jul. 2003, pp. 92–101.

[17] M. Herlihy and J. E. B. Moss, “Transactional memory:
Architectural support for lock-free data structures,” in Pro-
ceedings of the Twentieth Annual International Symposium
on Computer Architecture (ISCA), May 1993, pp. 289–300.

[18] G. Holzman, The Spin Model Checker: Primer and Reference
Manual. Addison-Wesley, 2004.

[19] G. J. Holzmann, “The engineering of a model checker: the
gnu i-protocol case study revisited,” in Proceedings of the 6th
Spin Workshop, Sep. 1999.

[20] G. J. Holzmann and D. Peled, “An improvement in formal
verification,” in Proceedings of the International Conference
on Formal Description Techniques (FORTE), 1994, pp. 197–
211.

[21] C. N. Ip and D. L. Dill, “Better verification through sym-
metry,” in Proc. Conf. on Computer Hardware Description
Languages and their Applications, 1993, pp. 97–111.

[22] S. Krstic, “Parameterized system verification with guard
strengthening and parameter abstraction,” in Automated Ver-
ification of Infinite State Systems, 2005.

[23] L. Lamport, Specifying Systems. Addison-Wesley, 2002.

[24] ——, “Checking a multithreaded algorithm with +CAL,” in
Proceedings of the 20th International Symposium on Dis-
tributed Computing (DISC), Sep. 2006, pp. 151–163.

[25] ——, “The +CAL algorithm language,” Feb.
2008, unpublished manuscript available at
http://research.microsoft.com/users/lamport/pubs/pluscal.pdf.

[26] J. R. Larus and R. Rajwar, Transactional Memory. Morgan
& Claypool, 2006.

[27] N. Lynch, Distributed Algorithms. Morgan Kauffman, 1996.

[28] N. Lynch et al., “IOA language and toolset,” tools and
documentation vailable at http://groups.csail.mit.edu/tds/ioa.

[29] N. A. Lynch and M. R. Tuttle, “Hierarchical correctness
proofs for distributed algorithms,” in Proceedings of the
Sixth Annual ACM Symposium on Principles of Distributed
Computing (PODC), 1987, pp. 137–151.

[30] C. Manovit, S. Hangal, H. Chafi, A. McDonald, C. Kozyrakis,
and K. Olukotun, “Testing implementations of transactional
memory,” in Proceedings of the 15th International Confer-
ence on Parallel Architectures and Compilation Techniques
(PACT), Sep. 2006, pp. 134–143.

[31] M. M. Michael and M. L. Scott, “Nonblocking algorithms
and preemption-safe locking on multiprogrammed shared
memory multiprocessors,” Journal of Parallel and Distributed
Computing, vol. 51, no. 1, pp. 1–26, 1998.

[32] K. F. Moore and D. Grossman, “High-level small-step op-
erational semantics for transactions,” in The Second ACM
SIGPLAN Workshop on Transactional Computing, 2007.

[33] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, V. Menon,
T. Shpeisman, M. Rajagopalan, A. Ghuloum, E. Sprangle,
A. Rohillah, and D. Carmean, “Runtime environment for tera-
scale platforms,” Intel Technology Journal, vol. 11, no. 3, pp.
207–215, Aug. 2007.

[34] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh,
and B. Hertzberg, “Mcrt-stm: a high performance software
transactional memory system for a multi-core runtime,” in
Proceedings of the Eleventh Annual ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming
(PPoPP), Mar. 2006, pp. 187–197.

[35] M. Scott, “Sequential specification of transactional memory
semantics,” in First ACM SIGPLAN Workshop on Languages,
Compilers, and Hardware Support for Transactional Comput-
ing, 2006.

[36] N. Shavit and D. Touitou, “Software transactional memory,”
in Proceedings of the Fourteenth Annual Symposium on
Principles of Distributed Computing (PODC), Aug. 1995, pp.
204–213.

[37] M. Talupur and M. Tuttle, “Going with the flow: Param-
eterized verification using message flows,” in Proceedings
of the 8th International Conference on Formal Methods in
Computer-Aided Design (FMCAD), Nov. 2008, pp. 69–76.

[38] C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-R. Adl-
Tabatabai, “Code generation and optimization for transac-
tional memory constructs in an unmanaged language,” in Pro-
ceedings of the International Symposium on Code Generation
and Optimization (CGO), Mar. 2007, pp. 34–48.

