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Abstract

We consider the following abstraction of competing publications. There are n players in the game. Each
player i chooses a point xi in the interval [0,1], and a player’s payoff is the distance from its point xi to the
next larger point, or to 1 if xi is the largest. For this game, we give a complete characterization of the Nash
equilibrium for the two-player game, and, more important, we give an efficient approximation algorithm to
compute numerically the symmetric Nash equilibrium for the n-player game. The approximation is com-
puted via a discrete version of the game. In both cases, we show that the (symmetric) equilibrium is unique.
Our algorithmic approach to the n-player game is non-standard in that it does not involve solving a system
of differential equations. We believe that our techniques can be useful in the analysis of other timing games.
© 2007 Elsevier Inc. All rights reserved.

JEL classification: C72; M37; C63

1. Introduction

We consider the following non-cooperative, complete-information strategic game. The pure
strategies are real numbers in [0,1]. Each player i chooses a number xi in [0,1], and player i’s
payoff is the distance to the next larger point. More precisely, the payoff is x′ − xi , where x′ =
min{xj | xj � xi and i �= j}, or x′ = 1 if xi is larger than the number chosen by any other player.

✩ An extended abstract of this work appeared in 18th ACM Symposium on Parallelism in Algorithms and Architectures,
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This game formalizes a simplified version of the situation where players seek to maximize their
visibility time.

In this paper we completely characterize the Nash equilibrium with a closed-form solution
for the two-player version of the game and prove it is symmetric and unique. While the analy-
sis in this case is standard, the equilibrium strategy turns out to be somewhat counter-intuitive.
Our main result, however, is for the general n-player game. For this model we develop an algo-
rithm that approximates the symmetric equilibrium strategy. Our approach is to use a discrete
version of the game, in which a player must choose from a finite set of points in the unit interval.
We develop an efficient numerical algorithm for the discretized game, and use it to approximate
the symmetric equilibrium of the continuous game to any degree of accuracy. We remark that
proving the algorithm correct entails an interesting methodology and some non-trivial analy-
sis.

1.1. Related work

The game we consider is, to the best of our knowledge, a new variant of the family of “tim-
ing games” (see, e.g., Fudenberg and Tirole, 1991). More specifically, our game resembles the
“War of Attrition” game, abbreviated henceforth “WoA.” In the two-player version of WoA, first
formalized by Maynard Smith (1974), the players are engaged in a costly competition and they
need to choose a time to concede. More formally, the first player to concede (called “leader”)
gets a smaller payoff than the other player (called “follower”). Furthermore, the payoff to the
leader strictly decreases as time progresses, i.e., conceding early is better than conceding late.
Hendricks et al. (1988) axiomatize and analyze a general setting of complete information WoA.
Our game violates one crucial axiom of Hendricks et al. (1988): in our game, the payoff to the
leader does not decrease with time.

WoA and other 2-player continuous-time timing games were generalized by Baye et al. to
a “general linear model of contests” (Baye et al., 1998). Implicitly, the general formula pre-
sented in Baye et al. (1998) covers our Lemma 3.2. Our other results (for the two-player game,
and, of course, all results for the n-player game) are unrelated to the results of Baye et al.
(1998).

Another family of games that superficially resembles our game is the Hotelling location
games (Hotelling, 1929), but these games either are zero-sum or they involve pricing, and hence
they are fundamentally different.

1.2. Organization

The remainder of this paper is organized as follows. In Section 2 we formally define the
game and review some relevant facts from game theory. In Section 3 we thoroughly ana-
lyze the two-player case in the continuous model. In Section 4 we consider the n-player
case, and present an algorithm to compute the equilibrium in the discrete model. Section 4.3
presents some experimental results. We discuss some applications motivating the game in Sec-
tion 5, and give concluding remarks in Section 6. Some standard proofs are presented in
Appendix A.
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2. Preliminaries

2.1. Definition of the visibility game

The visibility game is a symmetric game of n players, whose actions are (in the continuous
case) real numbers in the unit interval [0,1]. The payoff to each player i is defined as follows.
Given the choices (x1, . . . , xn) of the players, define

L(i)
def= {xj | xj � xi and j �= i}.

L(i) is the set of all values at least xi excluding xi . With this definition, the payoff function ui

for player i is defined by

ui(x1, x2, . . . , xn)
def=

{
min(L(i)) − xi, if L(i) �= ∅,

1 − xi, otherwise.

In words, ui is the distance from xi to either the next value up, or to 1 if xi is the unique maxi-
mum. Note that in our definition, if two players happen to choose the same value, the payoff to
both of them is 0. We call this definition non-conserving. In a conserving variant of the game,
colliding players somehow share the interval to their right, so that only the interval to the left
of the smallest xi is not claimed by anyone. Unless otherwise stated, we will mostly study the
non-conserving variant as defined above, which is mathematically more convenient.1

2.2. A game theory fact

We will make frequent use of the following standard property of Nash equilibria, which we
state in the n-player continuous case of our game (see, e.g., Osborne and Rubinstein, 1994).

Theorem 2.1. Let (f1, . . . , fn) be a Nash equilibrium point, with expected payoff vi to player
i at the equilibrium point. Let πi(x) denote the expected payoff for player i when he plays the
pure strategy x and all other players play their equilibrium mixed strategy. Then πi(x) � vi for
all x ∈ [0,1], and furthermore, there exists a set Z of measure 0 such that πi(x) = vi for all
x ∈ support(fi) \Z .

3. The 2-player continuous game

In this section we study the two player game. We start with the simple observation that
this game does not admit any pure-strategy equilibrium. The theorem is proved for the non-
conserving game variant, but the result holds (using arguments of the same type) in the conserv-
ing case as well.

Theorem 3.1. There is no equilibrium of pure strategies for the game.

Proof. By contradiction. Let (x, y) be such an equilibrium. First we note that x �= y, because
otherwise the payoff for the players is 0 and each player can increase his payoff by changing his

1 The non-conserving model captures some real situations. For example, suppose the action is interpreted as writing to
a shared register. In some implementations, concurrent writes to the same register yield unpredictable results, and may
simply fail.



646 Z. Lotker et al. / Games and Economic Behavior 62 (2008) 643–660
strategy.It follows that at least one of the players does not play 1
2 . Assume w.l.o.g. that x �= 1

2 .
Consider first the case that x < 1

2 . Then player 2 can improve his payoff by playing x + ε for
some arbitrarily small ε > 0. It follows that there is no equilibrium where a player plays less
than 1

2 . But there could be no equilibrium if both players play at least 1
2 : If x > 1

2 , then the best
strategy for player 2 is to play 0, contradiction. �

In the remainder of this section we analyze the mixed-strategy Nash equilibrium for two
players. It turns out that there is only one equilibrium point, which is symmetric.

3.1. Mixed strategy equilibrium

Let us start by assuming the existence of an equilibrium point (existence is not immediately
guaranteed because the game is infinite and the payoff functions are not continuous, but as it
will turn out, the equilibrium does exist). So fix a Nash equilibrium point. Let (f1, f2) be the
probability density functions (pdf’s) of players 1 and 2, respectively, at the equilibrium point.
The following lemma characterizes the density functions in the equilibrium point on nearly all
the support set. We remark that this result is implicit in (Baye et al., 1998). All proofs of this
section are given in Appendix A.

Lemma 3.2. There exists a set Z of measure zero, such that for all x ∈ support(f1) \Z , f2(x) =
1

1−x
.

We note that the density function of Lemma 3.2 remains invariant under affine transformations
of the payoff functions (possibly different transformations for the two players). More precisely,
if for some a1 > 0 and any real b1, the payoff function of player 1 is defined by

u1(x, y) =
{

a(y − x) + b, if y > x,

a(1 − x) + b, if x > y, and
0, otherwise,

and the payoff of player 2 is defined similarly using a2 > 0 and any real b2, then the proof of
Lemma 3.2 can be extended to show that f2(x) = 1

1−x
for x ∈ support(f1) \Z .

Next, we determine the support sets. First we note that the supports of f1 and f2 are essentially
the same.

Lemma 3.3. With the possible exception of a set of measure zero, support(f1) = support(f2).

We now set to determine the support of f1. To avoid dealing with pathological cases, we
make a simplifying assumption that the equilibrium strategies satisfy f1(x) = 1

1−x
for all

x ∈ support(f1) except for at most a finite number of points. We consider an equilibrium point
(f1, f2) with expected payoffs v1 and v2 to players 1 and 2, respectively.

Lemma 3.4. inf(support(f1)) = 0, and sup(support(f1)) = 1 − v1.

Lemma 3.5. For all intervals [x1, x2] with 0 < x1 < x2 < 1 − v1 we have that
∫ x2
x1

f1(x)dx > 0.

Thus we know how the pdf looks like “almost everywhere,” and we know that it spans the
interval [0,1−v], where v is the value of the game. In the theorem below, we show that there are
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Fig. 1. Nash equilibrium strategy for 2-player game. The pdf is on the left, and the cdf is on the right. The cutoff point is
1 − 1

e ≈ 0.632, and the game value is about 0.368.

no “atoms” (discrete points with positive probability) in the support of the equilibrium strategy.
This completes the characterization of the equilibrium strategy for the two-player game.

Theorem 3.6. Up to a set of measure zero, there is a unique Nash equilibrium point to the two-
player visibility game defined by f1(x) = 1

1−x
for 0 � x � 1 − 1

e and 0 otherwise. Furthermore,

the expected payoff for each player is 1
e .

We remark that the actual equilibrium strategy, as depicted in Fig. 1, was surprising to us. It
may be particularly interesting to find some natural phenomena that adhere to this distribution.

4. The n-player game

In this section we present our main results. We consider a discrete, symmetric n-player version
of our game. The game is defined by two parameters: the number of players n, and the resolution
of the actions k. Specifically, in our version, players can only choose from the k + 1 points
{0, 1

k
, 2

k
, . . . ,1}. We refer to the game as the (n, k)-game. Since this is a finite symmetric game, it

admits a symmetric mixed Nash equilibrium. In this section we consider only symmetric mixed
Nash equilibria.

4.1. Elementary properties of the equilibrium

It is convenient to define ti = 1− i
k

for i = 0, . . . , k so that i
k

is the distance from ti to 1, mean-
ing that tk = 0 and t0 = 1 (see Fig. 2). For any given equilibrium, we denote by pk,pk−1, . . . , p0
the probabilities of playing the pure strategies tk, tk−1, . . . , t0 in the equilibrium strategy, and de-
note by πti the payoff to a player playing the pure strategy ti when all other players follow the
equilibrium strategy. We start with a general property that holds also for the continuous case, and
then restrict attention to the discrete case.

Lemma 4.1. Consider the n-player game (continuous or discrete, conserving or not), and let
v a symmetric equilibrium value. Then v < 1/n. If the game is conserving, then we also have
v > 1/(n + 1).

Proof. Let π1,π2, . . . , πn be the random variables denoting the payoffs to the players
1,2, . . . , n following the equilibrium strategy. Obviously,

∑n
i=1 πi � 1, so by linearity of ex-

pectation nv = ∑n
i=1 E[πi] � 1, i.e., v � 1/n. To show that v �= 1/n, note that v = 1/n only
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Fig. 2. A schematic representation of the discrete game.

if at least one player chooses 0 with probability 1. However, in a symmetric equilibrium this
happens only if all players choose 0 with probability 1, and this is clearly not an equilib-
rium strategy (obviously for non-conserving games, and by considering the action 1/k for
conserving games). This proves the upper bound on v for the general case. In the case of
the conserving n-player game, let x1 . . . , xn denote the actions taken by the players, and let

x̂
def= min{x1, . . . , xn}. Since the game is conserving, we have that

∑n
i=1 πi = 1 − x̂, since only

the leftmost interval [0, x̂] is not claimed by any player. It follows from linearity of expectation
that nv = ∑n

i=1 E[πi] = 1 − E[x̂]. Suppose, for contradiction, that v � 1/(n + 1). If player n

plays the pure strategy 0 when all remaining players follow the equilibrium strategy, then his
payoff is min{x1, . . . , xn−1} and therefore his expected payoff is

E
[
min{x1, . . . , xn−1}

]
> E

[
min{x1, . . . , xn}

] = 1 − nv � 1 − n

n + 1
= 1

n + 1
� v,

contradicting the fact that v is the equilibrium value, so v > 1/(n + 1). �
Next, we calculate the expected payoff of playing the pure strategy ti against the equilibrium

strategy. We will use the following notation extensively.

Notation 4.1. Given a symmetric strategy for the (n, k) game:

• pi denotes the probability of choosing ti ,

• Fi,�
def= pi + pi−1 + · · · + pi−�+1 denotes the probability of choosing one of the � strategies

ti , ti−1, . . . , ti−�+1 to the right of ti , and
• πi denotes the payoff to a player playing ti .

Lemma 4.2. Given a symmetric strategy for the (n, k)-game, E[πi] = 1
k

∑i
�=1(1 − Fi,�)

n−1.

Proof. Since the value of πi is always of the form �
k

for some integer � satisfying 0 � � � k, the
expected value of πi is

E[πi] =
i∑

�=1

�

k
P
[
πi = �

k

]
= 1

k

i∑
�=1

P
[
πi � �

k

]

= 1

k

i∑
�=1

P[no one plays ti , . . . , ti−�+1] = 1

k

i∑
�=1

(1 − Fi,�)
n−1. �

One nice property of the (n, k) game is that the support for an equilibrium forms a segment at
the left of the unit interval, as in the continuous case for two players (cf. Lemmas 3.4 and 3.5).
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Lemma 4.3. For the (n, k)-game, if v is an equilibrium value, then tk, tk−1, . . . , tc is the equilib-
rium support, where c = �vk	 + 1.

Proof. Let ti be the largest strategy in the support, meaning that ti is in the support and
ti−1, . . . , t0 are not. Consider πi . Notice that Fi,� = pi since ti−1, . . . , t0 are not in the sup-
port, so Theorem 2.1 and Lemma 4.2 imply that v = E[πi] = i

k
(1 − pi)

n−1 < i
k

, so i > vk and
i � �vk	 + 1 = c. This shows that tc−1, . . . , t0 are not in the support.

Suppose that tc is not in the support. The expected payoff for playing the pure strategy tc
against the equilibrium strategy is c

k
since no other player plays tc, . . . , t0 since they are not in

the support. This value is at most the equilibrium value, so c
k

� v or c � vk, but this contradicts
the fact that c = �vk	 + 1 > vk.

Finally, suppose ti is in the support and ti+1 is not. Then by Lemma 4.2,

E[πi+1] = 1

k

i+1∑
�=1

(1 − Fi+1,�)
n−1

= 1

k
(1 − Fi+1,1)

n−1 + 1

k

i+1∑
�=2

(1 − Fi+1,�)
n−1

= 1

k
+ 1

k

i+1∑
�=2

(1 − Fi,�−1)
n−1

= 1

k
+ 1

k

i∑
�=1

(1 − Fi,�)
n−1

= 1

k
+ E[πi] > E[πi] = v.

The third equality holds since ti+1 is not in the support, meaning none of the players following
the equilibrium strategy play ti+1, so Fi+1,1 = 0 and Fi+1,� = Fi,�−1. But this means that playing
ti+1 beats an equilibrium strategy, contradiction. This concludes the proof that tk, tk−1, . . . , tc are
the equilibrium support. �
4.2. Symmetric equilibrium: uniqueness and algorithm

In this section we prove the following two theorems.

Theorem 4.4. There is a unique symmetric equilibrium to the (n, k) game.

Theorem 4.5. Algorithm EQUILIBRIUM(n, k, ε) of Fig. 3 computes the equilibrium value of the
(n, k) game to within ε.

We remark that in fact, we compute the equilibrium strategy and not only the equilibrium
value.

Overview. The high-level idea in the algorithm is as follows. We guess the game value v,
which implies the support set of the equilibrium strategy. Then we start computing the probabili-
ties associated with each point in the support set, starting with the rightmost point and advancing
to the left. This can be done since the payoff to a player who plays x depends only on the actions
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Subroutine FEASIBLE(n, k, v) =

(1) Let c = �vk	 + 1.

(2) Let pc = 1 − (v k
c )

1
n−1

(3) For i ← c + 1, . . . , k do
(3.1) Let pi be the least positive solution to v = Ei (pi , . . . , p0).
(3.2) Return “failure” if no positive solutions exist or Fi > 1.

(4) Return pk, . . . ,pc .

EQUILIBRIUM(n, k, ε) =

(1) Let l ← 1
n and r ← 0.

(2) While l − r > ε do
(2.1) Let m ← (l + r)/2.
(2.2) If FEASIBLE(n, k,m) succeeds then l ← m else r ← m.

(3) Return l.

Fig. 3. Algorithm EQUILIBRIUM(n, k, ε) computes the equilibrium value for the (n, k)-game to within ε. Fi = ∑i
j=0 pi

and Ei (pi , . . . , p0) is defined in Eq. (1).

taken to its right, i.e., actions with value larger than x. Since by induction the probability of these
actions have already been computed, we can proceed by solving the polynomials suggested by
Lemma 4.2. To make this idea work, we need to analyze the case of wrongly guessing the game
value. It requires some non-trivial analysis to show that if our guess of the game value is too
large, then the sum of the probabilities over the support set is smaller than 1, and if the guess is
too small, then the algorithm will fail at some point (indicated by the nonexistence of a positive
real probability that solves the polynomial for that point). Thus, we can conduct binary search
on the game value, approximating it to any desired degree. The uniqueness of the symmetric
equilibrium is a by-product of our analysis of the algorithm.

We start by applying Lemma 4.2 as follows. Suppose v is an equilibrium value for the
unique (n, k)-game, and suppose tk, . . . , tc is the equilibrium support with equilibrium distri-
bution pk, . . . ,pc . We know from Lemma 4.3 that c = �vk	 + 1. Since by Theorem 2.1 E[πi] is
equal to the equilibrium value, we have v = E[πi] = 1

k

∑i
�=1(1 − Fi,�)

n−1 for each i = c, . . . , k.
Equivalently, if we define

Ei (pi, . . . , p0)
def= 1

k

i∑
�=1

(1 − Fi,�)
n−1 (1)

then we have v = Ei (pi, . . . , p0) for each i = c, . . . , k. Since pc−1, . . . , p0 are all 0, Ec is a
polynomial in pc, Ec+1 is a polynomial in pc and pc+1, and so on. This suggests that we can
iteratively solve these equations for pc, then pc+1, and so on. At each step, having computed
the values of pc, . . . , pi−1, we just have to solve a polynomial of degree n − 1 in the single
variable pi , which can be efficiently solved to any desired accuracy. Let us state the simplest
case for later use.

Lemma 4.6. pc = 1 − (v · k
c
)

1
n−1 .

Proof. Solve v = Ec(pc,0, . . . ,0) = 1 ∑c
�=1(1 − Fc,�)

n−1 = c (1 − pc)
n−1 for pc. �
k k
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The main problem we face now is to show that we can find a set of values pi that will indeed
be probabilities. To this end, we define a feasible solution for a potential equilibrium value v as

follows. Let Fi
def= pi + · · · + p0, namely Fi is the probability of choosing at least 1 − i/k.

Definition 4.2. We say that pk,pk−1, . . . , pc is a feasible solution for v if c
def= �vk	 + 1 and the

following conditions hold for each i = c, . . . , k:
C1(i): v = Ei (pi, . . . , p0).
C2(i): pi � 0.
C3(i): Fi � 1.

It is obvious from this discussion that an equilibrium value has a feasible solution:

Lemma 4.7. If there is an equilibrium with value v and with support tk, . . . , tc and probabilities
pk, . . . , pc (where pc−1 = pc−2 = · · · = p0 = 0), then pk, . . . ,pc is a feasible solution for v

and Fk = 1.

It is not so obvious that the feasible solution for a given value v is unique. To do that, we first
rewrite the Ei polynomials and change their variables, as defined in the following lemma.

Lemma 4.8. Ei (pi, . . . , p0) = Pi (1 − Fi) where

Pi (x) = ai,0 + ai,1x + · · · + ai,n−1x
n−1, and ai,j = 1

k

(
n − 1

j

) i∑
�=1

(Fi−�)
n−1−j .

Proof. Follows immediately from

Ei (pi, . . . , p0) =
i∑

�=1

1

k
(1 − Fi,�)

n−1

=
i∑

�=1

1

k
(1 − Fi + Fi−�)

n−1

=
i∑

�=1

1

k

n−1∑
j=0

(
n − 1

j

)
(1 − Fi)

j (Fi−�)
n−1−j

=
n−1∑
j=0

1

k

(
n − 1

j

)(
i∑

�=1

(Fi−�)
n−1−j

)
(1 − Fi)

j . �

Using the Pi representation, and applying Descartes’s Rule of Signs, we can prove that solv-
ing for pi (after solving for p0, . . . , pi−1) results in at most one solution that makes sense, as
formalized in the following key lemma.

Lemma 4.9. Suppose v = Ei−1(pi−1, . . . , p0) and Fi−1 � 1 for some nonnegative pi−1, . . . , p0,
and suppose i − 1 > vk. If v = Ei (pi,pi−1, . . . , p0) and Fi � 1, then pi is the least positive
solution to the equation v = Ei (pi,pi−1, . . . , p0).



652 Z. Lotker et al. / Games and Economic Behavior 62 (2008) 643–660
Proof. First we prove that pi is positive, and then we prove that pi is the only positive solution
to both v = Ei (pi,pi−1, . . . , p0) and Fi � 1. It follows that pi is the least positive solution to v =
Ei (pi,pi−1, . . . , p0), since any smaller positive solution would also satisfy Fi � 1, contradicting
the uniqueness of pi .

To see that pi is positive, suppose pi � 0. Since pi−1, . . . , p0 are nonnegative and Fi−1 � 1,
we have Fi,� � Fi−1,�−1 � Fi−1 � 1, so 1 − Fi,� � 1 − Fi−1,�−1 � 0, and

v = Ei (pi,pi−1, . . . , p0) = 1

k

i∑
�=1

(1 − Fi,�)
n−1

� 1

k

i∑
�=1

(1 − Fi−1,�−1)
n−1

= 1

k
+ 1

k

i∑
�=2

(1 − Fi−1,�−1)
n−1

= 1

k
+ 1

k

i−1∑
�=1

(1 − Fi−1,�)
n−1

= 1

k
+ Ei−1(pi−1, . . . , p0) = 1

k
+ v > v

which is a contradiction, so pi > 0.
To see that pi is unique, Lemma 4.8 says that each choice of pi satisfying v = Ei (pi,pi−1, . . . ,

p0) and Fi � 1 yields a distinct nonnegative root 1 − Fi of the polynomial

(ai,0 − v) + ai,1x + · · · + ai,n−1x
n−1

so we need only count the number of nonnegative roots of this polynomial. The coefficients of
the nonconstant terms are nonnegative since the Fi−� defining the ai,j are nonnegative. In fact,
some of them must be positive since some of the nonnegative pi−1, . . . , p0 must be positive:
If all of the pi−1, . . . , p0 are zero, then i − 1 > vk implies v = Ei−1(pi−1, . . . , p0) = i−1

k
> v,

which is a contradiction.
Suppose zero is a root. Then the coefficient of the constant term (ai,0 − v) must be zero,

and since the other coefficients are nonnegative and some are positive, there can be no positive
roots. Thus, there is a unique nonnegative root 0, so 1 − Fi = 0 and pi = 1 − Fi−1 is uniquely
determined.

Suppose zero is not a root. We know that there is a nonnegative root 1 − Fi , so there must be
at least one positive root. Descartes’s Rule of Signs says that the number of positive real roots
(counting multiplicities) of a polynomial is equal to the number of alternations in the signs of its
nonzero coefficients minus an even number. Since all coefficients of the non-constant terms are
nonnegative and some are positive, and since there is at least one positive root, the coefficient of
the constant term must be negative or the number of sign alternations would be zero, contradict-
ing the existence of a positive root. Thus, the number of sign alternations is one and there is a
unique nonnegative root r , so 1 − Fi = r and pi = r − 1 − Fi−1 is uniquely determined. �



Z. Lotker et al. / Games and Economic Behavior 62 (2008) 643–660 653
Corollary 4.10. If there is a feasible solution for v, then it is unique.

Proof. The definition of a feasible solution says that pc−1, . . . , p0 must be 0, where c =
�vk	 + 1. Since c > vk, Lemma 4.6 says that pc is uniquely determined and positive, and, by
induction on i > c, Lemma 4.9 shows that pi is uniquely determined since i − 1 � c > vk. �

We now prove the central property of the algorithm: if there exists a feasible solution
for v, there exist solutions for all v′ � v. The main results of this section follow directly from
Lemma 4.11 below.

Lemma 4.11. If there is a feasible solution pk, . . . ,pc for v, then there is a feasible solution
p′

k, . . . , p
′
c′ for each v′ > v. In this case, F ′

k < Fk where F ′
i = p′

i + · · · + p′
c′ and Fi = pi +

· · · + pc.

Proof. We show that there is a feasible solution for each v′ > v satisfying c
k

� v′ > c−1
k

. The

same proof shows that if there is a feasible solution for c′
k

, then there is a feasible solution for

each v′ satisfying c′+1
k

� v′ � c′
k

. Thus, by induction on c′, there is a feasible solution for each
v′ > v.

The values pk, . . . ,pc and v satisfy C1(i), C2(i), and C3(i) for all i � c. It is enough to
construct p′

k, . . . , p
′
c so that the values p′

k, . . . , p
′
c and v′ satisfy C1(i), C2(i), and C3(i) for

all i � c. To see why, consider two cases. If c
k

> v′, then since c
k

> v′ > v � c−1
k

we have
c′ = �v′k	 + 1 = �vk	 + 1 = c, and p′

k, . . . , p
′
c is a feasible solution for v′. If c

k
= v′, then

c′ = c + 1, but Lemma 4.6 says that p′
c = 1 − (v′ · k

c
)

1
n−1 = 0. Since the values p′

k, . . . , p
′
c and v′

satisfy C1(i), C2(i), and C3(i) for i � c, they certainly do for i � c + 1, and p′
k, . . . , p

′
c+1 is a

feasible solution for v′.
We proceed by induction on i � c to construct values p′

i , . . . , p
′
0 satisfying the following

properties: (1) v′ = Ej (p
′
j , . . . , p

′
0), (2) p′

j � 0, and (3) F ′
j < Fj � 1 for all c � j � i.

Suppose i = c. Lemma 4.6 and v′ > v imply that

p′
c = 1 −

(
v′k
c

) 1
n−1

< 1 −
(

vk

c

) 1
n−1 = pc

and properties (1–3) from above clearly hold. In particular, p′
c � 0 since c

k
� v′, and F ′

c = p′
c <

pc = Fc � 1.
Suppose i > c and we have constructed p′

i−1, . . . , p
′
0 satisfying properties (1–3) for c � j �

i − 1. Lemma 4.8 says that 1 − Fi is a nonnegative root of the polynomial Pi (x) − v where

Pi (x) = ai,0 + ai,1x + · · · + ai,n−1x
n−1, and ai,j = 1

k
·
(

n − 1

j

)
·

i∑
�=1

(Fi−�)
n−1−j .

We show that there is a positive root of the polynomial P ′
i (x) − v′ where

P ′
i (x) = a′

i,0 + a′
i,1x + · · · + a′

i,n−1x
n−1, and a′

i,j = 1

k
·
(

n − 1

j

)
·

i∑
�=1

(F ′
i−�)

n−1−j ,

and use this to construct the desired p′
i . These polynomials have several useful properties. First,

a′ < ai,j since 0 � F ′ < Fi−� � 1 for all � � 1 by the induction hypothesis. Second, the ai,j
i,j i−�
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are positive and the a′
i,j are nonnegative for the same reason. Third, a′

i,n−1 is actually positive,
since

a′
i,n−1 = 1

k
·
(

n − 1

n − 1

)
·

i∑
�=1

(F ′
i−�)

0 = i

k
> 0

because i > c � 0.
Descartes’s Rule of Signs says that the number of positive real roots (counting multiplicities)

of a polynomial is equal to the number of alternations in the signs of its nonzero coefficients
minus an even number. We know that 1 −Fi is a nonnegative root of Pi (x)− v. If 1 −Fi is zero,
then the constant term ai,0 − v of Pi (x) − v must be zero. If 1 − Fi is positive, then the constant
term ai,0 − v of Pi (x) − v must be negative, for if not then all nonzero coefficients of Pi (x) − v

are positive and the number of sign alternations is zero, contradicting the fact that Pi (x) − v has
a positive root. Thus, in either case, ai,0 − v � 0, and a′

i,0 < ai,0 implies a′
i,0 − v < ai,0 − v = 0,

so the constant term of P ′
i (x) − v must be negative. The nonzero coefficients of P ′

i (x) − v

therefore consist of positive coefficients followed by a negative constant term, so the number of
sign alternations is one, and there is a positive root R′

i of P ′
i (x)− v. Let p′

i = (1 −R′
i )−F ′

i−1 so
that 1 − F ′

i = R′
i is this root.

(1) We have v′ = P ′
i (1 − F ′

i ) = Ei (p
′
i , . . . , p

′
0) by Lemma 4.8, since 1 − F ′

i is a root of
P ′

i (x) − v′.
(2) We have p′

i > 0 by Lemma 4.9.
(3) Suppose F ′

i � Fi . Since 1−F ′
i is a positive root of P ′

i (x)−v, we have 0 � F ′
i , Fi � 1, and

hence 0 � 1 − F ′
i � 1 − Fi � 1. Notice that P ′

i (x) and Pi (x) are nondecreasing between 0 and 1
since the coefficients a′

i,j and ai,j are nonnegative. Notice also that P ′
i (x) � Pi (x) between 0

and 1 since the coefficients satisfy a′
i,j � ai,j . It follows that v′ = P ′

i (1 − F ′
i ) � Pi (1 − F ′

i ) �
Pi (1 − Fi) = v, contradicting v′ > v, and we are done. �

Lemma 4.11 immediately implies Theorem 4.4:

Proof of Theorem 4.4. If v′ > v are distinct equilibria, then 1 = F ′
k < Fk = 1, contradic-

tion. �
Lemma 4.11 also implies that we can use binary search to find the equilibrium value. The algo-

rithm EQUILIBRIUM(n, k, ε) uses binary search to compute the equilibrium value of the (n, k)-
game to within ε. It repeatedly calls FEASIBLE(n, k, v) to test whether there is a feasible solution
for v. To prove correctness, we need only check that FEASIBLE(n, k, v) computes the feasible
solution for v.

Lemma 4.12. FEASIBLE(n, k, v) returns pk, . . . ,pc iff pk, . . . ,pc is a feasible solution for v.

Proof. If the algorithm returns pk, . . . , pc, then v = Ei (pi, . . . , p0) and pi � 0 and Fi � 1 for
each i = c, . . . , k, since the algorithm would have returned “failure” if any of these conditions
were false, so pk, . . . ,pc is a feasible solution for v. Conversely, suppose pk, . . . ,pc is a feasible
solution for v. On each iteration i of the loop on line (3), line (3.1) computes the least positive
solution to v = Ei (pi, . . . , p0), and Lemma 4.9 says this is precisely pi ; and since pi is part of a
feasible solution and thus passes the test on line (3.2), the algorithm returns the feasible solution
pk, . . . ,pc. �



Z. Lotker et al. / Games and Economic Behavior 62 (2008) 643–660 655
We can now prove the correctness of the algorithm.

Proof of Theorem 4.5. Let v be the equilibrium value. We will show that the algorithm pre-
serves the invariant that (1) l � v < r , (2) there is a feasible solution for l, and (3) there is no
feasible solution for r . Since the algorithm terminates when l − r � ε, Part (1) of the invariant
will imply the result. The base case for Part (1) follows from Lemma 4.1 and line (1) of Algorithm
EQUILIBRIUM(n, k, ε). Part (2) follows from Lemma 4.11. Part (3) follows from the fact that if
there were a feasible solution for r > v then there were a feasible solution for v with Fk < 1, con-
tradiction to Lemma 4.7. For the induction step, suppose first that FEASIBLE(n, k,m) succeeds.
Then by Lemma 4.12 there exists a feasible solution for 1 − m/k and hence, by Lemma 4.11,
v � 1 − m/k, proving Part (1). Part (2) in this case follows from Lemma 4.12, and Part (3)
follows from the induction hypothesis. If FEASIBLE(n, k,m) fails, then v < 1 − m/k, since oth-
erwise, there exists a feasible solution to v with Fk < 1, contradiction to Lemma 4.7. This proves
Part (1). Part (2) follows from the induction hypothesis and Part (3) from Lemma 4.12. In any
case, the assignment made in line (2.2) of the algorithm guarantees that the invariant holds, and
we are done. �
4.3. Experimental results

Figure 4 gives the equilibrium strategies and approximate game values for 3-, 4-, and 5-player
games with k ≈ 100 and ε ≈ 0.01 as computed by an implementation of our algorithm in Mathe-
matica. Notice that the game value decreases as the number of players increases, as predicted by
Lemma 4.1. Notice also how the probabilities initially decrease and then increase for the 3-player
game, in contrast to the 2-player game where the probabilities increase monotonically up to the
cutoff point (recall Fig. 1). Most interesting, however, are the minute oscillations in the proba-
bilities for strategies near zero. On the right side of Fig. 4 we have zoomed in and increased the
resolution of the y-axis scale by a factor of 100 to show the oscillations. Some of this oscillation
may be due to numerical errors in our Mathematica implementation, but moving from 2- to 3- to
4-player games we find 0, 1, and 2 extreme points in the probability functions. While we have no
mathematical explanation for this phenomenon at this point, we speculate that there is a subtle
interaction among the players’ strategies that would be interesting to explore in the future.

5. Applications

The visibility game captures an abstract notion of visibility: Each player chooses a time to
perform an action that maximizes the time the action is visible to others.

In the commercial world, the action might be launching a new product in the stores. It is well
known that the public has a short attention span. In the case of advertising, this means that one
launch can be overshadowed by a following launch: The impact of the advertising campaign
for the first launch can be lost in the noise and excitement surrounding the second launch. An
advertiser might be inclined to minimize the negative impact of subsequent launches by timing
its launch to maximize the time between launches.

In computer science, applications abound. As one example, a valuable resource is usually
protected by having a processor write a value into a control register or acquire a lock. If the
register can be overwritten or the lock can be preempted by another processor, then one processor
might want to maximize its access to the resource by carefully choosing the time to acquire it.
As another example, consider load balancing. Suppose servers compete for tasks (because they
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The 3-player equilibrium strategy with game value 0.27.

The 4-player equilibrium strategy with game value 0.21.

The 5-player equilibrium strategy with game value 0.17.

Fig. 4. Equilibrium strategies and game values for the 3-, 4-, and 5-player games. On the left is the probability function,
and on the right we zoom in dramatically (notice the y-axis scale) to show minute probability fluctuations for strategies
near zero. Game values are approximations correct to within ε ≈ 0.01.

can charge customers for performing tasks) by updating a pointer directing a task to a server. In
any symmetric equilibrium to our game, all players would see the same expected payoff, which
would translate into all servers getting the same number of tasks.

In other settings, people might actually want to minimize visibility. With smoking frowned
upon so widely in the United States, a community leader might want to choose a time to enter a
smoking room that maximizes the time he or she will be alone in the room.

Our simple formulation of the visibility game does restrict its application in several ways.
First, players choose times in advance before the game starts. This means the choice is made

“off-line” with regard to the evolution of the game once it has started. In the real world, the
inability to respond immediately (which is inherent to any physical process) forces at least a part
of the game to be played in an off-line fashion. As another example, consider a product whose
release is a major event, meaning its release time must be planned far in advance.
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Second, players choose times with little or no knowledge of the times chosen by other players,
which is related to having players choose times in advance. Incomplete knowledge is a fact of life
in computer science. In asynchronous distributed systems, processors are typically modeled as
completely independent agents that make progress at unpredictable rates that are totally unrelated
to each other. In reactive systems, processors respond to input from users potentially sitting in
different room with no knowledge of the other users. Timing actions with incomplete knowledge
occurs in other settings, too: In the smoking scenario, there may be many doors into the smoking
room, and who knows who will enter or when?

Finally, two players choosing the same time are awarded a payoff of zero. We do consider
other payoffs in the paper, but in computer science the payoff often is zero. In a wireless net-
work, computers transmitting at the same time simply generate noise in the network, and no
communication happens. In some models of concurrent computation, two processors writing to
the same register collide and both writes fail. Even in advertising, since the attention of the au-
dience in a certain domain is typically dominated by a very small set of recent events, the payoff
for a collision is very small.

6. Conclusion

Our results represent a first step toward understanding the effect of delayed actions on the
outcome of timely games. These games arise naturally in many situations such as recommen-
dation systems and other economic systems. To do that, we have defined and analyzed a simple
game we called the visibility game. To the best of our knowledge, this is the first time this game
is explicitly addressed. We have a fairly good understanding of the game for two players, and a
general method to solve the game for n players. For example, consider the following extension:
At every point in time, all previous actions are ordered from newest to oldest, and the payoff is
the integral of a decreasing function of the ranking (the function for the basic game is 1 for the
last player and 0 to everyone else). Our algorithm can be extended to this case. Other interesting
directions include the following.

• Analyzing the numerical stability of our algorithm.
• Analyzing an on-line problem with delay considerations.
• Understanding the repeated game version.
• Analyzing the case where each player can write k times in a single time unit, for some k > 1.
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Appendix A. Additional proofs

Proof of Lemma 3.2. Let F1,F2 denote the cumulative density functions (cdf’s) of the density
functions f1, f2, respectively. Let v1 be the expected payoff for player 1 at the equilibrium point.
By Theorem 2.1, there exists a set Z of measure 0 such that for all x ∈ support(f1) \Z , we have

v1 =
1∫
u1(x, y)f2(y)dy
0
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=
x∫

0

(1 − x)f2(y)dy +
1∫

x

(y − x)f2(y)dy

= (1 − x)F2(x) +
1∫

x

yf2(y)dy − x
(
1 − F2(x)

)

= F2(x) − x +
1∫

x

yf2(y)dy.

Differentiating with respect to x, and applying the fundamental theorem of differential calculus,
we get that for any x ∈ support(f1) \Z we have

0 = f2(x) − 1 − xf2(x),

and the lemma follows. �
Proof of Lemma 3.3. First, note that 1 /∈ support(f1) since the pure strategy 1 is dominated by
any other pure strategy. Next, we claim that the measure of the set support(f1) \ support(f2) is
zero: This is true since by Lemma 3.2 we have that with the exception of a set of measure 0, if
x ∈ support(f1) then f2(x) > 0 (since 0 � x < 1) and hence x ∈ support(f2) as well. Repeating
the symmetric argument with the players switched, we get that the measure of support(f2) \
support(f1) is also zero, and the result follows. �
Proof of Lemma 3.4. First we analyze the infimum. Suppose inf(support(f1)) = ε > 0,
and let v1 be the expected payoff for player 1 at the equilibrium point. By Lemma 3.3,
inf(support(f2)) = ε too. By Theorem 2.1, we have that when player 1 plays the pure strategy ε

his expected payoff is

v1 =
1∫

ε

(y − ε)f2(y)dy.

Hence, when player 1 plays the pure strategy 0, his expected payoff is

1∫
ε

(y − 0)f2(y)dy = v1 + ε

1∫
ε

yf2(y)dy > v1,

contradiction to Theorem 2.1.
We now consider the supremum. Suppose first, for contradiction, that sup(support(f1)) = x >

1 − v1. Then the expected payoff for player 1 when playing x should be v1, but the payoff when
playing x is never more than 1 − x < v1, contradiction. Next, suppose that sup(support(f1)) =
x < 1 − v1. Then the expected payoff for player 1 when playing x+1−v1

2 is always 1 − x+1−v1
2 >

1 − 2(1−v1)
2 = v1, contradiction. �

Proof of Lemma 3.5. Suppose, for contradiction, that there exist x1 and x2 such that 0 < x1 <

x2 < 1 − v1 and
∫ x2 f1(x)dx = 0. Let [x1, x2] be a maximal such interval, i.e., the integral of

x1
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f1 over any interval that contains [x1, x2] is strictly positive. By Lemma 3.4, we may assume
w.l.o.g. that x1, x2 ∈ support(f1). Hence, by Theorem 2.1, it must be the case that

1−v1∫
0

u1(x1, y)f2(y)dy =
1−v1∫
0

u1(x2, y)f2(y)dy.

However, by definition of the payoff function, we have

1−v1∫
0

u1(x2, y)f2(y)dy −
1−v1∫
0

u1(x1, y)f2(y)dy

=
x1∫

0

(
(1 − x2) − (1 − x1)

)
f2(y)dy +

1−v1∫
x1

(
(y − x2) − (y − x1)

)
f2(y)dy

=
1−v1∫
0

(x1 − x2)f2(y)dy < 0,

contradiction. �
Proof of Theorem 3.6. Fix a Nash equilibrium point. By Lemma 3.3, we may assume w.l.o.g.
that both players employ the same mixed strategy f at that point, except perhaps for a set Z
of measure zero. By Lemmas 3.4 and 3.5, we have that support(f ) = [0,1 − v], where v is the
game value. We now argue that no point x ∈ support(f ) has positive probability. For suppose,
towards contradiction, that there exists a point x0 such that P[x0] = δ > 0 under f . By our
assumption that the number of such points is finite, there exists an ε′ > 0 such that f (x) = 1

1−x

for x ∈ support(f ) ∩ [x0 − ε, x0 + ε] \ {x0}. Let us assume that x0 < 1 − v first, and consider
playing the pure strategies x0 and x0 + ε against f . Playing x0 results in expected outcome

I0 =
x−

0∫
0

(1 − x0)f (y)dy +
1∫

x+
0

(y − x0)f (y)d(y)

=
x−

0∫
0

(1 − x0)f (y)dy +
x0+ε∫
x+

0

(y − x0)f (y)d(y)

+
1∫

x0+ε

(y − x0)f (y)d(y), (1)

where integrating up to x−
0 means that we integrating over the half-open interval that does not

include x0, and similarly when integrating from x+
0 . On the other hand, when playing x0 + ε, we

obtain
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Iε =
x−

0∫
0

(1 − x0 − ε)f (y)dy + P[y = x0] · (1 − x0 − ε)

+
x0+ε∫
x+

0

(1 − x0 − ε)f (y)dy +
1∫

x0+ε

(y − x0 − ε)f (y)dy. (2)

It therefore follows that

Iε − I0 � P[y = x0] · (1 − x0 − ε) − ε

−
x0+ε∫
x+

0

(y − 1 + ε)f (y)dy

� δ(1 − x0 − ε) − ε,

and hence, limε→0+(Iε −I0) = δ(1−x0) > 0. However, by Theorem 2.1, we must have I0 = Iε =
v, contradiction. If x0 = 1−v, we use the corresponding argument with x0 − ε. We can therefore
conclude that f (x) = 1

1−x
for all x ∈ support(f ), except perhaps for a set with f -measure is 0.

Since
∫ 1−v

0 f (x)dx = 1, we obtain that ln 1
1−v

= 1, and hence v = 1
e . �
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