
Brief Announcement:
Extracting Models from Design Documents with Mapster

David James
Palo Alto

Tim Leonard
Intel

tim.leonard@charter.net

John O’Leary
Intel

john.w.oleary@intel.com

Murali Talupur
Intel

murali.talupur@intel.com

Mark R. Tuttle
Intel

tuttle@acm.org

Abstract: We cannot apply PODC methodologies to indus-
trial designs without formal models of the designs. Formal
models are usually hard to find. We have built a tool that
extracts formal models directly from design documents.

Categories and Subject Descriptors: B.6.3 [Logic De-
sign]: Design Aids—Verification
General Terms: Algorithms, Design, Verification
Keywords: Industrial Design, Models, Verification

Protocol verification consists of three easy steps: find a pro-
tocol, model the protocol, and verify the protocol. Go ahead,
laugh at the joke, but it is not much of an exaggeration to say
that getting the protocol model has traditionally been the
hardest of the three steps at companies like Digital, Compaq,
HP, and Intel. We could talk for an hour on the reasons, but
the bottom line is that the tools we build assume the exis-
tence of a model, and we think very little about where these
models come from, yet our tools will never gain widespread
use if we don’t address the problem of building the model of
an industrial design.

Industry often uses the “Superman approach” to model
building. (Superman is a fictional comic book superhero
once popular in America.) In this approach, a single veri-
fication expert joins a group (usually late), spends months
learning the protocol, building a model, changing the model
as the design changes, and only then gets to do any verifica-
tion. This is not the right approach. For one thing, it doesn’t
scale well (there aren’t many supermen), it burns out the su-
permen we have (leaving even fewer supermen), and it never
gets past the “technology demonstration” phase (“That was
great, Superman, you wanna do it for me again?”).

While not building models, designers are producing a num-
ber of design artifacts with significant technical content:
microarchitecture specification documents containing state
transition tables, block diagrams, pipeline diagrams, timing
diagrams, message flows, etc. We should be able to use this
information to build the formal model we need from what
the designers are already willing to produce. And once the
model is built, it could be highly attractive to the designers
to include it in their documents, leading to more precise,
less ambiguous design documents.

Copyright is held by the author/owner(s).
PODC’08, August 18–21, 2008, Toronto, Ontario, Canada.
ACM 978-1-59593-989-0/08/08.

This is our dream:

• A front-end that can extract from a specification doc-
ument the transition tables, block diagrams, pipeline
diagrams, etc, and build a formal protocol model.

• A back-end that can take this protocol model and pro-
duce input to formal verification tools, and produce
reference models for traditional simulation.

What we have done is build a tool that mechanically extracts
tabular information from a design document — state tran-
sition tables, state definitions, type definitions, etc — and
builds a mathematical protocol model, and from that model
generates a Murphi model [3] for model checking. We have
applied this approach to a cache coherence protocol that is
unusual (caches are maintained on doubly-linked lists) and
complex (37 cache states) called SIMPL.

We are not the first to do table-based design [1, 2, 4], but
it is one thing to ask designers to write tables in a style
intended for formal analysis, and it is another to take ta-
bles as they are written by the designers and make formal
sense of them. We require no language or GUI for building
the model, and impose no rigid philosophy on how protocols
should be described. Our aim is to take the protocol descrip-
tion in a form that makes most sense to the designer, and
to make formal sense of that. Our approach involves two
key ideas: a way to assign semantics to table columns, and
a way to rewrite the resulting model when our method of
assigning semantics to columns fails to express the intended
semantics exactly.

[1] M. Azimi, C.-T. Chou, A. Kumar, V. W. Lee, P. K.
Mannava, and S. Park. Experience with applying formal
methods to protocol specification and system architec-
ture. Formal Methods in System Design, 22(2):109–116,
Mar. 2003.

[2] C. Heitmeyer, M. Archer, R. Bharadwaj, and R. Jeffords.
Tools for constructing requirements specifications: The
SCR toolset at the age of ten. International Journal of
Computer Systems Science and Engineering, 20(1):19–
35, Jan. 2005.

[3] C. N. Ip and D. L. Dill. Better verification through sym-
metry. In Computer Hardware Description Languages
and their Applications, pages 97–111, Apr. 1993.

[4] D. Parnas. Inspection of safety-critical software using
program function tables. In Proceedings of the IFIP 13th
World Computer Congress, pages 270–277, Aug. 1994.


