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Abstract. We have a new proof of the lower bound that k-set agree-
ment requires �f/k� + 1 rounds in a synchronous, message-passing model
with f crash failures. The proof involves constructing the set of reachable
states, proving that these states are highly connected, and then appeal-
ing to a well-known topological result that high connectivity implies that
set agreement is impossible. We construct the set of reachable states in
an iterative fashion using a round operator that we define, and our proof
of connectivity is an inductive proof based on this iterative construction
and using simple properties of the round operator. This is the shortest
and simplest proof of this lower bound we have seen.

1 Introduction

The consensus problem [20] has received a great deal of attention. In this prob-
lem, n + 1 processors begin with input values, and all must agree on one of
these values as their output value. Fischer, Lynch, and Paterson [11] surprised
the world by showing that solving consensus is impossible in an asynchronous
system if one processor is allowed to fail. This leads one to wonder if there is any
way to weaken consensus to obtain a problem that can be solved in the presence
of k − 1 failures but not in the presence of k failures. Chaudhuri [6] defined
the k-set agreement problem and conjectured that this was one such problem,
and a trio of papers [4, 16, 21] proved that she was right. The k-set agreement
problem is like consensus, but we relax the requirement that processors agree:
the set of output values chosen by the processors may contain as many as k
distinct values, and not just 1. Consensus and set agreement are just as interest-
ing in synchronous models as they are in asynchronous models. In synchronous
models, it is well-known that consensus requires f +1 rounds of communication
if f processors can crash [10, 8, 9], and that k-set agreement requires �f/k�+ 1
rounds [7]. These lower bounds agree when k = 1 since consensus is just 1-set
agreement. In this paper, we give a new proof of the �f/k�+ 1 lower bound for
set agreement in the synchronous message-passing model with crash failures.

All known proofs for the set agreement lower bound depend — either explic-
itly or implicitly — on a deep connection between computation and topology.



These proofs essentially consider the simplicial complex representing all pos-
sible reachable states of a set agreement protocol, and then argue about the
connectivity of this complex. These lower bounds for set agreement follow from
the observation that set agreement cannot be solved if the complex of reachable
states is sufficiently highly-connected. This connection between connectivity and
set agreement has been established both in a generic way [14] and in ways spe-
cialized to particular models of computation [2, 4, 7, 13–15,21]. Once the connec-
tion has been established, however, the problem reduces to reasoning about the
connectivity of a protocol’s reachable complex.

Most of the prior work employing topological arguments has focused on the
asynchronous model of computation, in which processors can run at arbitrary
speeds, and fail undetectably. Reasoning about connectivity in the asynchronous
model is simplified by the fact that the connectivity of the reachable complex
remains unchanged over time. Moreover, the extreme flexibility of the processor
failure model facilitates the use of invariance arguments to prove connectivity.
In the synchronous model that we consider here, analyzing connectivity is sig-
nificantly more complicated. The difficulty arises because the connectivity of the
reachable complex changes from round to round, so the relatively simple invari-
ance arguments used in the asynchronous model cannot possibly work here.

The primary contribution of this work is a new, substantially simpler proof
of how the connectivity of the synchronous complex evolves over time. Our proof
depends on two key insights:

1. The notion of a round operator that maps a global state to the set of global
states reachable from this state by one round of computation, an operator
satisfying a few simple algebraic properties.

2. The notion of an absorbing poset organizing the set of global states into
a partial order, from which the connectivity proof follows easily using the
round operator’s algebraic properties.

We believe this new proof has several novel and elegant features. First, we are
able to isolate a small set of elementary combinatorial properties of the round
operator that suffice to establish the connection with classical topology. Second,
these properties require only local reasoning about how the computation evolves
from one round to the next. Finally, most connectivity arguments can be difficult
to follow because they mix semantic, combinatorial, and topological arguments,
but those arguments are cleanly separated here: The definition of the round
operator captures the semantics of the synchronous model, the reasoning about
the round operator is purely combinatorial, and the lower bound is completed
with a “black box” application of well-known topological results without any
need to make additional topological arguments.

In the next section, we give an overview of our proof strategy and discuss its
relationship to other proofs appearing in the literature. In the main body of the
paper, we sketch the proof itself. The full proof in the full paper fills just over
a dozen pages, making it the shortest self-contained proof of this lower bound
that we have seen.
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Fig. 1. A global state S and the set R1(S) of global states after one round from S.

2 Overview

We assume a standard synchronous message-passing model with crash failures [3,
17]. The system has n + 1 processors, and at most f of them can crash in any
given execution. Each processor begins in an initial state consisting of its input
value, and computation proceeds in a sequence of rounds. In each round, each
processor sends messages to other processors, receives messages sent to it by the
other processors in that round, performs some internal computation, and changes
state. We assume that processors are following a full-information protocol, which
means that each processor sends its entire local state to every processor in every
round. This is a standard assumption to make when proving lower bounds. A
processor can fail by crashing in the middle of a round, in which case it sends its
state only to a subset of the processors in that round. Once a processor crashes,
it never sends another message after that.

We represent the local state of a processor with a vertex labeled with that
processor’s id and its local state. We represent a global state as a set of labeled
vertexes, labeled with distinct processors, representing the local state of each
processor in that global state. In topology, a simplex is a set of vertexes, and a
complex is a set of simplexes that is closed under containment. Applications of
topology to distributed computing often assume that these vertexes are points
in space and that the simplex is the convex hull of these points in order to be
able to use standard topology results. As you read this paper, you might find it
helpful to think of simplexes in this way, but in the purely combinatorial work
done in this paper, a simplex is just a set of vertexes.

As an example, consider the simplex and complex illustrated in Figure 1.
On the left side, we see a simplex representing an initial global state in which
processor P , Q, and R start with input values 0, 2, and 1. Each vertex is labeled
with a processor’s id and its local state (which is just its input value in this case).
On the right we see a complex representing the set of states that arise after one
round of computation from this initial state if one processor is allowed to crash.
The labeling of the vertexes is represented schematically by a processor id such
as P and a string of processor ids such as PQ. The string PQ is intended to



represent the fact that P heard from processors P and Q during the round but
not from R, since R failed that round. (We are omitting input values on the right
for notational simplicity.) The simplexes that represent states after one round
are the 2-dimensional triangle in the center and the 1-dimensional edges that
radiate from the triangle (including the edges of the triangle itself). The central
triangle represents the state after a round in which no processor fails. Each edge
represents a state after one processor failed. For example, the edge with vertexes
labeled P ; PQR and Q; PQ represent the global state after a round in which R
fails by sending a message to P and not sending to Q: P heard from all three
processors, but Q did not hear from R.

What we do in this paper is define round operators like the round operatorR1

that maps the simplex S on the left of Figure 1 to the complex R1(S) on the
right, and then argue about the connectivity of R1(S). Informally, connectivity
in dimension 0 is just ordinary graph connectivity, and connectivity in higher
dimensions means that there are no “holes” of that dimension in the complex.
When we reason about connectivity, we often talk about the connectivity of a
simplex S when we really mean the connectivity of the induced complex con-
sisting of S and all of its faces. For example, both of the complexes in Figure 1
are 0-connected since they are connected in the graph theoretic sense. In fact,
the complex on the left is also 1-connected, but the complex on the right is not
since there are “holes” formed by the three cycles of 1-dimensional edges. The
fundamental connection between k-set agreement and connectivity is that k-set
agreement cannot be solved after r rounds of computation if the complex of
states reachable after r rounds of computation is (k − 1)-connected. In the re-
mainder of this overview, we sketch how we define a round operator, and how
we reason about the connectivity of the complex of reachable states.

2.1 Round operators

In the synchronous model, we can represent a round of computation with a round
operator R� that maps the state S at the start of a round to the set R�(S) of
all possible states at the end of a round in which at most � processors fail.
Suppose F is the set of processors that fail in a round, and consider the local
state of a processor p at the end of that round. The full-information protocol
has each processor send its local state to p, so p receives the local state of each
processor, with the possible exception of some processors in F that fail before
sending to p. Since each processor q sending to p sends its local state, and since
this local state labels q’s vertex in S, we can view p’s local state at the end of the
round as the face of S containing the local states p received from processors like q.
If we define S/F to be the face of S obtained by deleting the vertexes of S labeled
with processors in F , then p receives at least the local states labeling S/F , so p’s
local state after the round of computation can be represented by some face of S
containing S/F .

This intuition leads us to define the round operator R� as follows. For each
set F of at most � processors labeling a state S, define RF (S) to be the set of



simplexes obtained by labeling each vertex of S/F with some face of S contain-
ing S/F . This is the set of possible states after a round of computation from S
in which F is the set of processors that fail, since the processors labeling S/F
are the processors that are still alive at the end of the round, and since they
each hear from some set of processors that contains the processors labeling S/F .
The round operator R�(S) is defined to be the union of all RF (S) such that F
is a set of at most � processors labeling S.

To illustrate this informal definition, consider the complex R1(S) of global
states on the right of Figure 1. This complex is the union of four rather de-
generate pseudospheres, which are complexes defined in Section 5.1 that are
topologically similar to a sphere. The first pseudosphere is the central triangle.
This is the pseudosphere R∅(S), where each processor hears from all other pro-
cessors, so each processor’s local state at the end of the round is the complete
face {P, Q, R} of S. The other three pseudospheres are the cycles hanging off
the central triangle. These are the pseudospheres of the form R{P}(S), where
each processor hears from all processors with the possible exception of P , so
each processor’s local state at the end of the round is either the whole sim-
plex S = {P, Q, R} or the face S/ {P} = {Q, R}, depending on whether the
processor did or did not hear from P .

If R�(S) is the set of possible states after one round of computation, then
Rr

�(S) = R�Rr−1
� (S) is the set of possible states after r rounds of computation.

The goal of this paper is to prove that Rr
�(S) is highly-connected.

2.2 Absorbing posets

To illustrate the challenge of proving that Rr
�(S) is connected, let us assume

that R�(S) is �-connected for every S and �, and let us prove that R�R�(S)
is �-connected. If R�(S) = {S1, . . . , Sk} is the set of states after one round, then

R�R�(S) = R�(S1 ∪ S2 ∪ · · · ∪ Sk)
= R�(S1) ∪R�(S2) ∪ · · · ∪ R�(Sk)

is the set of states after two rounds. We know that the R�(Si) are �-connected
by assumption, but we need to prove that their union is �-connected.

Proving that a union of complexes is connected is made easier by the Mayer-
Vietoris theorem, which says that A∪B is c-connected if A and B are c-connected
and A∩B is (c− 1)-connected. This suggests that we proceed by induction on i
to prove that

R�(S1) ∪R�(S2) ∪ · · · ∪ R�(Si)

is connected for i = 1, . . . , k. We know that

R�(S1) ∪R�(S2) ∪ · · · ∪ R�(Si−i) and R�(Si)

are both �-connected by hypothesis and assumption, so all we need to do is prove
that their intersection

[R�(S1) ∪R�(S2) ∪ · · · ∪ R�(Si−1)] ∩R�(Si)
= [R�(S1) ∩R�(Si)] ∪ [R�(S2) ∩R�(Si)] ∪ · · · ∪ [R�(Si−1) ∩R�(Si)]



is (�− 1)-connected. This union suggests another Mayer-Vietoris argument, but
what do we know about the connectivity of the R�(Sj) ∩R�(Si)?

One of the elegant properties of the round operator is that

R�(Sj) ∩R�(Si) = R�−c(Sj ∩ Si)

where c is the number of vertices in Si or Sj that do not appear in Sj ∩ Si,
whichever number is larger. We refer to this number as the codimension of Si

and Sj , and it is a measure of how much the two states have in common.
The R�−c(Sj ∩ Si) are (� − c)-connected by our assumption, but we need to
prove that they are (�− 1)-connected for our inductive argument to go through,
and it is not generally true that the Si and Sj have codimension c = 1.

One of the insights in this paper — and one of the reasons that the lower
bound proof for set agreement is now so simple — is that we can organize the
inductive argument so that we need only consider pairs of simplexes Si and Sj in
this union that have codimension c = 1. If we order the set R�(S) = {S1, . . . , Sk}
of one-round states correctly, then we can prove that every set R�(Sj) ∩R�(Si)
in the union is contained in another set R�(Tj)∩R�(Si) in the union such that Tj

and Si have codimension c = 1. The larger set “absorbs” the smaller set, and
while the smaller set may not have the desired (�−1)-connectivity, the larger set
does. Now we can write this union as the union of the absorbing sets, which is a
union of (�−1)-connected sets, and apply Mayer-Vietoris to prove that the union
itself is (�−1)-connected. In this paper, we show how to define a partial order on
the set R�(S) = {S1, . . . , Sk} of one-round states that guarantees this absorption
property holds during the Mayer-Vietoris argument. We call this partial order
an absorbing poset.

To illustrate the notion of an absorbing poset, consider once again the com-
plex R1(S) of global states on the right of Figure 1. Suppose we order the
pseudospheres making up R1(S) by ordering the central triangle first and then
ordering the cycles surrounding this triangle in some order. Within each cycle,
let us order the edges of the cycle by ordering the edge of the central triangle
first, then the two edges intersecting this edge in some order, and finally outer-
most edge that does not intersect the central triangle. To see that this ordering
has the properties of an absorbing poset, consider the central triangle T and the
edge E consisting of the vertexes P ; PR and R; PQR. The simplexes T and E
intersect in the single vertex R; PQR and hence have codimension two. On the
other hand, consider the edge F consisting of the vertexes R; PQR and P ; PQR.
This edge F appears between T and E in the simplex ordering, the intersection
of F and E is actually equal to the intersection of T and E, and the codimension
of F and E is one. This property of an absorbing poset is key to the simplicity
of the connectivity argument given in this paper.

2.3 Related work

We are aware of three other proofs of the k-set agreement lower bound.
Chaudhuri, Herlihy, Lynch, and Tuttle [7] gave the first proof. Their proof

consisted of taking the standard similarity chain argument used to prove the



consensus synchronous lower bound and running that argument in k dimensions
at once to construct a subset of the reachable complex to which a standard
topological tool called Sperner’s Lemma can be applied to obtain the desired
impossibility. While their intuition is geometrically compelling, it required quite
a bit of technical machinery to nail down the details.

Herlihy, Rajsbaum, and Tuttle [15] gave a proof closer to our “round-by-
round” approach. In fact, the round operator that we define here is exactly the
round operator they defined. Their connectivity proof for the reachable complex
was not easy, however, and the inductive nature of the proof did not reflect the
iterative nature of how the reachable complex is constructed by repeatedly ap-
plying the round operator locally to a global state S. The notion of an absorbing
poset used in this paper dramatically simplifies the connectivity proof.

Gafni [12] gave another proof in an entirely different style. His proof is based
on simple reductions between models, showing that the asynchronous model can
simulate the first few rounds of the synchronous model, and thus showing that
the synchronous lower bound follows from the known asynchronous impossibility
result for set agreement [4, 16, 21]. While his notion of reduction is elegant, his
proof depends on the asynchronous impossibility result, and that result is not
easy to prove. We are interested in a simple, self-contained proof that gives as
much insight as possible into the topological behavior of the synchronous model
of computation.

Round-by-round proofs that show how the 1-dimensional (graph) connec-
tivity evolves in the synchronous model have been described by Aguilera and
Toueg [1] and Moses and Rajsbaum [18] (the latter do it in a more general way
that applies to various other asynchronous models as well) to prove consensus
impossibility results. These show how to do an elegant FLP style of argument,
as opposed to the more involved backward inductive argument of the standard
proofs [10, 8, 9]. They present a (graph) connectivity proof of the successors of a
global state. Thus, our proofs are similar to this strategy in the particular case
of k = 1, but give additional insights because they show more general ways of
organizing these connectivity arguments.

There are also various set agreement impossibility results for asynchronous
systems that are related to our work.

Attiya and Rajsbaum [2] and Borowsky and Gafni [4] present two similar
proofs for the set agreement impossibility. The relation to our work is that they
are also combinatorial. However, their proofs are for an asynchronous, shared
memory model. Also, they do not have a round-by-round structure; instead they
work by proving that the set of global states at the end of the computation
has some properties (somewhat weaker than connectivity) that are sufficient to
apply Sperner’s Lemma and obtain the desired impossibility result.

Borowsky and Gafni [5] defined an asynchronous shared-memory model where
variables can be used only once, a model they showed to be equivalent to gen-
eral asynchronous shared-memory models. They defined a round operator as
we do, and they showed that one advantage of their model was that it had a
very regular iterative structure that greatly simplified computing its connectiv-



ity. Unfortunately, their elegant techniques for the asynchronous model do not
extend to the synchronous model. Reasoning about connectivity is harder in
the synchronous model than the asynchronous model for two reasons. First, the
connectivity never decreases in the asynchronous model, whereas it does in the
synchronous model, so their techniques cannot extend to our model. Second,
processors never actually fail in their construction since dead processors can be
modeled as slow processors, but this is not an option in our model, and we are
forced to admit simplexes of many dimensions as models of global states where
processors have failed.

3 Topology

We now give formal definitions of the topological ideas sketched in the introduc-
tion.

A simplex is just a set of vertexes. Each vertex v is labeled with a processor
id id(v) and a value val(v). We assume that the vertexes of a simplex are labeled
with distinct processor ids, and we assume a total ordering ≤id on processor ids,
which induces an ordering on the vertexes of a simplex. A face of a simplex
is a subset of the simplex’s vertexes, and we write F ⊆ S if F is a face of S.
A simplex X is between two simplexes S0 and S1 if S0 ⊆ X ⊆ S1. A complex
is a set of simplexes closed under containment (which means that if a simplex
belongs to a complex, then so do its faces). If A is a set of simplexes, denote
by ‖A‖ the smallest simplicial complex containing every simplex of A. It is easy
to show that

‖A ∪ B‖ = ‖A‖ ∪ ‖B‖ and ‖A ∩ B‖ ⊆ ‖A‖ ∩ ‖B‖.
The codimension of a set S = {S1, . . . , Sm} of simplexes is

codim(S) = max
i

{dim(Si) − dim(∩jSj)} = max
i

{|Si − ∩jSj |} ,

where dim(∅) = −1 is the dimension of the empty simplex. This definition sat-
isfies several simple properties, such as:

1. If X is between two simplexes S and T , then

codim(S, T ) = codim(S, X) + codim(X, T ).

2. If codim(S0, Si) ≤ 1 for i = 1, . . . , m, then

codim(S0, S1, . . . , Sm) ≤ m.

3. If S1, . . . , Sm is a set of simplexes with largest dimension N and codimen-
sion c, then their intersection S1∩· · ·∩Sm is a simplex with dimension N−c.

The connectivity of a complex is a direct generalization of ordinary graph
connectivity. A complex is 0-connected if it is connected in the graph-theoretic
sense, and while the definition of k-connectivity is more involved, the precise
definition does not matter here since our work depends only on two fundamental
properties of connectivity:



Theorem 1.

1. If S is a simplex of dimension k, then the induced complex ‖S‖ is (k − 1)-
connected.

2. If the complexes L and M are k-connected and L∩M is (k − 1)-connected,
then L ∪M is k-connected.

By convention, a nonempty complex is (−1)-connected, and every complex is
(−k)-connected for k ≥ 2. The first property follows from the well-known fact
that ‖S‖ is k-connected when S is a nonempty simplex of dimension k (k ≥ 0),
but when S is empty (k = −1), the best we can say is that ‖S‖ is (−2)-connected
(since every complex is (−2)-connected). The second property above is a con-
sequence of the well-known Mayer-Vietoris sequence which relates the topology
of L∪M with that of L, M and L∩M (for example, see Theorem 33.1 in [19]).

4 Computing connectivity

Computing the connectivity of R�(A) for some complex A depends on properties
of the round operator R� and on how the Mayer-Vietoris argument used in the
proof is organized. In this section, we define the notion of an f -operator and
the notion of an absorbing poset that structures the Mayer-Vietoris argument
by imposing a partial order on simplexes in the complex A, and we prove that
an f -operator applied to this partially-ordered complex A is connected.

A simplicial operator Q is a function with an associated domain. It maps
every simplex S in its domain to a set Q(S) of simplexes, and it extends to sets
of simplexes in its domain in the obvious way with Q(A) = ∪S∈AQ(S). Proving
the connectivity of Q(A) is simplified if Q satisfies the following property:

Definition 1. Let Q be an operator, and let f be a function that maps each
set A of simplexes in the domain of Q to an integer f(A). We say that Q is
an f -operator if for every set A of simplexes in the domain of Q

⋂

S∈A
‖Q(S)‖ is (f(A) − c − 1)-connected

where c = codim(A).

To illustrate this definition, consider a single simplex S of dimension k, and
remember the fundamental fact of topology that ‖S‖ is (k − 1)-connected. Now
consider two simplexes S and T of dimension k that differ in exactly one vertex
and hence have codimension one. Their intersection S ∩ T has dimension k − 1,
so ‖S∩T ‖ is (k−1−1)-connected. In fact, we can show that ‖S‖∩‖T ‖ is (k−1−1)-
connected and, in general, that ‖S‖ ∩ ‖T ‖ is (k − c − 1)-connected if c is the
codimension of S and T . In other words, the connectivity of their intersection
is reduced by their codimension. In the definition above, if we interpret f(A) as
the maximum connectivity of the complexes ‖Q(S)‖ taken over all simplexes S
in A, then this definition says that taking the intersection of the ‖Q(S)‖ reduces



the connectivity by the codimension of the S. As a simple corollary, if we take
the identity operator I(S) = {S} and define f(A) = maxS∈A dim(S) to be the
maximum dimension of any simplex in A, then we can prove that the identity
operator is an f -operator.

Proving the connectivity of Q(A) is simplified if there is a partial order on
the simplexes in A that satisfies the following absorption property:

Definition 2. Given a simplicial operator Q and a nonempty partially-ordered
set (S,�) of simplexes in the domain of Q, we say that (S,�) is an absorbing
poset for Q if for every two simplexes S and T in S with T �� S there is TS ∈ S
with TS � T such that

‖Q(S)‖ ∩ ‖Q(T )‖ ⊆ ‖Q(TS)‖ ∩ ‖Q(T )‖ (1)
codim(TS , T ) = 1. (2)

For example, if S is totally ordered, then every intersection ‖Q(S)‖ ∩ ‖Q(T )‖
involving a simplex S preceding a simplex T is contained in another intersection
‖Q(TS)‖∩‖Q(T )‖ involving another simplex TS preceding T with the additional
property that TS and T have codimension 1.

To see why such an ordering is useful, consider the round operator R�, and
remember the problem we faced in the overview of proving that

R�(S1) ∪R�(S2) ∪ · · · ∪ R�(Si)

is connected for i = 1, . . . , k. We were concerned that R�(Sj) ∩ R�(Si) =
R�−c(Sj∩Si) was (�−c)-connected and in general might not be (�−1)-connected
since the codimension c of Sj and Si might be too high. If we can impose an
ordering on the S1, . . . , Sk and prove that the S1, . . . , Sk form an absorbing
poset for R�, then each R�(Sj) ∩ R�(Si) with j < i is contained in another
R�(Sj′ ) ∩ R�(Si) with j′ < i where Sj′ and Si have codimension one. This
means that when computing the connectivity of the union we can restrict our
attention to the intersections R�(Sj′) ∩ R�(Si) with codimension one, and the
proof goes through.

In general, we can prove that applying an operator to an absorbing poset
yields a connected complex:

Theorem 2. If Q is an f -operator and (A,�) is an absorbing poset for Q, then

‖Q(A)‖ =
⋃

S∈A
‖Q(S)‖ is (f − 1)-connected

where f = minB⊆A f(B).

In the special case of the identity operator, we say that (A,�) is an absorbing
poset if it is an absorbing poset for the identity operator. It is an easy corollary
to show that if (A,�) is an absorbing poset, then

‖A‖ =
⋃

S∈A
‖S‖ is (N − 1)-connected,

where N is the minimum dimension of the simplexes in A.



5 Synchronous connectivity

In this section, we show how to use the ideas of the previous section to prove
that Rr

k(S) is (k − 1)-connected, from which we conclude that k-set agreement
is impossible to solve in r rounds.

5.1 Round operators

Given a simplex S representing the state at the beginning of a round, and given
a set X of processors that fail during the round, let F = S/X be the face
of S obtained from S by deleting the vertexes labeled with processors in X .
The set of all possible states at the end of a round of computation from S in
which processors in X fail can be represented by the set of all possible simplexes
obtained by labeling the vertexes of F with simplexes between F and S. This set
of simplexes obtained in this way forms a set that we call a pseudosphere. For
every simplex S, the pseudosphere operator PS(F ) maps a face F of S to the set
of all labelings of F with simplexes between F and S. The set PS(F ) is called
a pseudosphere, and the face F is called the base simplex of the pseudosphere.
Given a simplex T contained in a pseudosphere PS(F ) we define base(T ) to be
the base simplex F of the pseudosphere.

If � processors fail during the round, there there are many ways to choose this
set X of processors that fail, and hence many ways to choose the base simplexes
F = S/X for the pseudospheres whose simplexes represent the states at the
end of the round. For every integer � ≥ 0, the �-failure operator F�(S) maps a
simplex S to the set of all faces F of S with codim(F, S) ≤ �, which is the set
of all faces obtained by deleting at most � vertexes from S. The domain of the
operator F�(S) is the set of all simplexes S with dim(S) ≥ �.

Finally, for every integer � ≥ 0, the synchronous round operator R�(S) is
defined by

R�(S) = PS(F�(S)).

The domain of this operator R�(S) is the set of all simplexes S with dim(S) ≥
� + k. This round operator satisfies a number of basic properties such as:

Lemma 1.

1. R�(S) ⊆ Rm(S) if � ≤ m and S is in the domain of Rm.
2. R�(S) ⊆ R�+c(T ) if S ⊆ T and c = codim(S, T ).
3. R�(S1)∩· · ·∩R�(Sm) = R�−c(S1∩· · ·∩Sm) if c = codim(S1, . . . , Sm), � ≥ c,

and each Si is in the domain of R�.
4. ‖R�(S1)‖ ∩ · · · ∩ ‖R�(Sm)‖ = ‖R�(S1) ∩ · · · ∩ R�(Sm)‖.

Proof. We sketch the proof of property 3.
For the ⊇ containment, suppose A ∈ R�−c(∩jSj). This means that A is a

labeling of a simplex F with simplexes between F and ∩jSj for some face F
of ∩jSj satisfying codim(F,∩jSj) ≤ � − c. Since A is a labeling of F with
simplexes between F and ∩jSj , it is obviously a labeling of F with simplexes



between F and Si. We have A ∈ R�(Si) since F is a face of ∩jSj which is in
turn a face of Si, and hence

codim(F, Si) = codim(F,∩jSj) + codim(∩jSj , Si)
≤ codim(F,∩jSj) + codim(S1, . . . , Sm)
≤ (� − c) + c = �.

For the ⊆ containment, suppose A ∈ ∩jR�(Sj). For each i, we know that A
is a labeling of Fi with simplexes between Fi and Si for some face Fi of Si

satisfying codim(Fi, Si) ≤ �. Since A is a labeling of Fi for each i, it must be
that the Fi are all equal, so let F be this common face of the Si and hence
of ∩jSj . Since A is a labeling of F with simplexes between F and Si for each i,
it must be that A is a labeling of F with simplexes between F and ∩jSj . Since F
is a face of ∩jSj which is in turn a face of each Si, including any SM satisfying
codim(∩jSj , SM ) = codim(S1, . . . , SM ) = c, we have A ∈ R�−c(∩jSj) since
codim(F,∩jSj) = codim(F, SM ) − codim(∩jSj , SM ) ≤ � − c. ��

The round operator R� models a single round of computation. We model
multiple rounds of computation with the multi-round operator Rr

LR� defined
inductively by R0

LR�(S) = R�(S) and Rr
LR�(S) = RL(Rr−1

L R�(S)) for r > 0.
The domain of Rr

LR� is the set of all simplexes S with dim(S) ≥ rL + � + k.
The properties of one-round operators given above generalize to multi-round
operators where R� is replaced by Rr

LR�.

5.2 Absorbing posets

We now impose a partial order on R�(S) and prove that it is an absorbing poset.
First we order the pseudospheres PS(F ) making up R�(S), and then we order
the simplexes within each pseudosphere PS(F ).

Both of these orders depend on ordering the faces F of S, which we do
lexicographically. First we order the faces F by decreasing dimension, so that
large faces occur before small faces. Then we order faces of the same dimension
with a rather arbitrary rule using on our total order on processor ids: we order F0

before F1 if the smallest processor id labeling vertexes in F0 and not F1 comes
before the smallest processor id labeling F1 and not F0. Formally:

Definition 3. Define the total order ≤f on the faces of a simplex S by F0 ≤f F1

iff

1. dim(F0) > dim(F1) or
2. dim(F0) = dim(F1) and either

(a) F0 = F1 or
(b) F0 �= F1 and p0 <id p1

where p0 = min {ids(F0) − ids(F1)} and p1 = min {ids(F1) − ids(F0)} .

This face ordering induces an ordering on pseudospheres: PS(F0) comes be-
fore PS(F1) if F0 comes before F1 in the face ordering. This face ordering also



induces an ordering on the simplexes within a single pseudosphere PS(F ): S0

comes before S1 if for each vertex v of the base simplex F the face labeling v
in S0 comes before the face labeling v in S1. This ordering of PS(F ) is defined
formally as follows:

Definition 4. Define the partial order �p on PS(F ) by S0 �p S1 iff S0,v ≤f S1,v

for each vertex v in F where S0,v and S1,v are the simplexes labeling the vertex v
in S0 and S1.

Pulling everything together, the partial order on R�(S) is defined as follows:

Definition 5. Define the partial order �r on R�(S) by S0 �r S1 iff

1. different pseudospheres: base(S0) <f base(S1) or
2. same pseudosphere: base(S0) = base(S1) and S0 �p S1

Now we can prove that (R�(S),�r) is an absorbing poset, and that

Lemma 2. (R�(S),�r) is an absorbing poset for Rr
L for dim(S) ≥ rL + � + k.

Proof. We prove only the base case that (R�(S),�r) is an absorbing poset. Let A
and B be two simplexes in R�(S) satisfying B ��r A.

Case 1 : Suppose A and B are in the same pseudosphere PS(F ) for some
face F of S. The simplexes A and B are labelings of F with simplexes between F
and S, so let Av and Bv denote the label of vertex v in A and B for every vertex
v ∈ F . There must be some vertex v with Av <f Bv since B ��r A. Let BA be B
with the label of v changed from Bv to Av. We have BA ≺r B since the label of v
in BA is ordered before the label of v in B, and the labels of all other vertices
are equal. We have A ∩ B ⊆ BA since v is not in A ∩ B due to the conflicting
labels for v, while all other vertexes of B and hence of A∩B are in BA. Finally,
we have codim(BA, B) = 1 since BA and B differ only in the label of v.

Case 2 : Suppose A and B are in different pseudospheres PS(FA) and PS(FB)
for distinct faces FA and FB of S. We can assume without loss of generality that
every vertex of B − A is labeled with S, and we can show that FA <f FB .

Case 2a: Suppose dim(FA) > dim(FB). Since dim(FA) > dim(FB), the set
FA−FB must be nonempty, so choose any vertex v ∈ FA−FB. Since A ∈ PS(FA),
the simplex A must be a labeling of FA with simplexes between FA and S.
Since v is a vertex of FA, this means that v appears in all simplexes labeling A,
and hence in all simplexes labeling A ∩ B. Since we have assumed that S is
the label of every vertex in B − A, and since S certainly contains the vertex v,
the vertex v appears in all labels of B − A. It follows that v appears in every
simplex labeling B. Let BA be the simplex consisting of B together with the
vertex v labeled with S, and notice that BA is a simplex in R�(S). We have
BA ≺r B since dim(BA) = dim(B) + 1 > dim(B). We have A ∩ B ⊆ BA since
A ∩ B ⊆ B ⊆ BA. We have codim(B, BA) = 1 since B and BA differ only in v.

Case 2b: Suppose dim(FA) = dim(FB), in which case we have pA ≺p pB

where pA = min {ids(FA) − ids(FB)} and pB = min {ids(FB) − ids(FA)}. Let vA

and vB be the vertexes for processors pA and pB in the faces FA and FB of S.
Let FC be the face of S obtained from FB by replacing vB with vA, and let C be



the labeling of FC obtained by labeling vA with S and every other vertex with
its label in B. Since A is a labeling of FA with simplexes between FA and S, and
since vA is a vertex of FA, the vertex vA appears in every simplex labeling A and
hence A ∩ B; and since we are assuming that every vertex of B − A is labeled
with S which certainly contains vA, it follows that every vertex of B − A is
labeled with a simplex containing vA; and hence it follows that every label in B
contains FC . It follows that C ∈ R�(S) since C is a labeling of a face FC of S
with simplexes between FC and S. We have C ≺r B since

min {ids(FC) − ids(FB)} = pA ≺p pB = min {ids(FB) − ids(FC)} .

We have A ∩ B ⊆ C and codim(B, C) = 1. Taking BA = C, we are done. ��

5.3 Connectivity

All that remains is to prove that Rr
k is a k-operator. This follows from the

following pair of statements proven by mutual induction:

Theorem 3. For all r ≥ 0,

1. ‖Rr
LR�(S)‖ is (k − 1)-connected for all � ≥ 0, all L ≥ k, and all S in the

domain of Rr
LR�.

2. Rr
LR� is a k-operator for all L, � ≥ k.

Since Rr
k is a k-operator, and since (Rk(S),�r) is an absorbing poset for Rr

k,
the connectivity follows by Theorem 2:

Corollary 1. ‖Rr
k(S)‖ is (k − 1)-connected if dim(S) ≥ (r + 1)k.

6 Conclusion

As we have said, the impossibility of k-set agreement now follows directly from
the connectivity of ‖Rr

k(S)‖ using standard arguments based on variants of
Sperner’s Lemma that have appeared in several places now. We hope that the
notions of a round operator and an absorbing poset will yield simple proofs of
other results, and will show the way toward simple proofs in other models of
computation such as the asynchronous message-passing model.
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