
Fast Increment Registers�

Soma Chaudhuriy

Department of Computer Science
Iowa State University

Ames� IA �����
chaudhur�cs�iastate�edu

Mark R� Tuttle

DEC Cambridge Research Lab
One Kendall Square� Bldg ���

Cambridge� MA �	�
�
tuttle�crl�dec�com

Abstract

We give an optimal� wait�free implementation of an increment register� An increment
register is a concurrent object consisting of an integer�valued register with an increment

operation that atomically increments the register and returns the previous value� We
implement this register in a synchronous� message�passing model with crash failures� In
our implementation� an increment operation halts in O
log c� rounds of communication�
where c is the number of concurrently executing increment operations� This is the
�rst wait�free implementation of any object that matches the �
log c� lower bound by
Herlihy and Tuttle for wait�free implementations� and it proves that their lower bound
is tight� The signi�cance of our result is not so much the implementation itself� but
what it says about lower bounds� Our result says that �
log c� is the best possible
lower bound that applies to so many objects in so many models� The algorithm itself is
interesting� however� because it is based on an optimal solution for strong renaming� a
simple decision problem used by Herlihy and Tuttle to prove their lower bound�

� Introduction

A concurrent object is a data structure that can be accessed by many processes simultane�
ously� Most interesting implementations of concurrent objects are designed for asynchronous
systems of unreliable processes� Most of these implementations depend on some form of
mutual exclusion�involving locks or semaphores�to restrict access to the object� In such
implementations� a process must be inside the critical section before it can perform an
operation on the object� and this guarantees that the process can access and modify the ob�
ject in isolation without interference from other processes� Unfortunately� implementations
based on mutual exclusion can be unacceptable in asynchronous� unreliable systems� since
a process �possibly holding a lock� can fail in the critical section and block other processes
from accessing the object� Even when processes do not fail� processes may be delayed in
the critical section �due to a page fault or being swapped out as the result of the expiration
of a scheduling quantum�� and again block other processes from accessing the object� In
addition� if processes run at di�erent speeds� then a fast process can be blocked by a slow
process as it plods through the critical section�

In contrast� an implementation of an object is said to be wait�free if it guarantees
that any nonfaulty process can complete any operation on the object in a 	nite number
of steps� independent of the failure of other processes or variations in their speed� Wait�
free implementations provide a strong form of concurrency and fault�tolerance since they

�This paper appeared in Gerard Tel and Paul Vit�anyi� editors� Proceedings of the �th International Work�

shop on Distributed Algorithms� volume ��� of Lecture Notes in Computer Science� pages ������ Springer	
Verlag� Berlin� October
����

ySupported in part by NSF grant CCR	�
	��
�
�

guarantee that no process can be prevented from completing an operation by the failure
of other processes� or by di�erences in their speeds� They also provide a kind of real�time
guarantee since they guarantee a bound on the number of steps a process must take to
complete an operation�

Concurrent objects are an important part of concurrent algorithms� so it is important to
understand how quickly these objects can be implemented� With this goal in mind� Herlihy
and Tuttle �HT�
� prove a general�purpose lower bound for wait�free implementations of
concurrent objects� They consider a synchronous� message�passing model with crash fail�
ures� and they prove that any wait�free implementation of any object that can solve strong

renaming must have an operation requiring ��log c� rounds of communication in the worst
case�� Closer examination of their proof technique� however� reveals that their lower bound
holds for a much larger set of objects� including any object with an operation that must
return distinct values on distinct invocations� Notice that since there is no such thing as a
slow process in a synchronous model� the notion of a wait�free implementation in this model
coincides with the simpler notion of an implementation that can tolerate the failure of all
but one process� However� since they prove their lower bound in this restrictive synchronous
model� their lower bound is a general result that applies to any more asynchronous model
in which slow processes do exist�

In this work� we prove that their lower bound is tight� We give an optimal� wait�free
implementation of an increment register� An increment register is a concurrent object con�
sisting of an integer�valued register with an increment operation that atomically increments
the register and returns the previous value� This is a special case of a fetch�add register
since
 is the only value that can be added to the register� We implement this register in
a synchronous� message�passing system with crash failures� the same model used to prove
the lower bound� In our implementation� an increment operation halts in O�log c� rounds
of communication� where c is the number of concurrently executing increment operations�
This is the 	rst wait�free implementation of any concurrent object to match the ��log c�
lower bound�

The primary signi	cance of our work is what it has to say about proving lower bounds�
The fact that we implement our increment register in the same powerful� synchronous model
that Herlihy and Tuttle use to prove their lower bound says that their proof technique cannot
be pushed any farther� In particular� it is not possible to prove a better general�purpose
lower bound that applies to as many objects and to as many models of computation� It is
likely that implementing a particular object in a particular model will require more than
O�log c� steps� To prove this� however� will require considering a smaller class of objects
�not the class of all objects� or a closer approximation of the model of interest �not the
synchronous model��

Our implementation is also interesting on purely algorithmic grounds� since our optimal
implementation of an increment register is based on an optimal solution to the strong re�
naming problem �HT�
�� We 	nd it remarkable that both the upper and lower bound for
increment registers arise from considering the same decision problem� In general� imple�
menting long�lived objects is inherently more di�cult than solving decision problems� In
the 	rst place� a decision problem is solved once whereas the same operation can be invoked
on an object repeatedly� In the second place� processes solving a decision problem start
together simultaneously at time
� whereas processes invoking operations on an object can
arrive at di�erent and unpredictable times� The major technical di�culty in this work has

�Strong renaming is a decision problem in which processes begin with process ids taken from a totally	
ordered set� and choose new names for themselves� The problem requires that if c processes participate in
the protocol then these processes end up with distinct names in the range
� � � � � c� This is a strong form
of the general renaming problem �ABND���� ABND���� since the range of names chosen must equal the
number of participants� which is known to be impossible in asynchronous systems�

�

been to guarantee that processes invoking increment operations on the register at di�erent
times do not interfere with each other�

Of course� there are many ways to implement an increment register� In fact� there are
general�purpose techniques for constructing a wait�free implementation of any concurrent
object� They are based on atomic broadcast �Lam��� Lam��� Sch��� and consensus �Her�
b��
so they yield implementations requiring O�n� rounds where n is the number of processes�
On the other hand� it is well�known that type�speci	c techniques often yield more e�cient
implementations than general�purpose techniques �Her���� but our implementation shows
that this in complexity can be substantially greater than previously known� Prior to this�
a O�

p
c� round implementation of an increment register �HT�
� was the closest that any

wait�free implementation of any object had come to meeting the ��log c� lower bound�
Finally we note that an active area of research concerns asynchronous� wait�free data

structures called counting networks �AHS�
�� and that counting networks yield easy imple�
mentations of increment registers� A counting network resembles a sorting network� except
that the comparators in the sorting network are replaced with constructs called balancers�
Counting networks can be used to construct fast increment registers� but counting networks
are designed for asynchronous systems in which processes do not fail� and in the absence of
failures an increment register can be implemented with a single round of communication in
our synchronous model� On the other hand� in the presence of failures� comparing execution
times is di�cult since simulating the balancers seems to require attaining some degree of
consensus� resulting in increment registers requiring a linear number of rounds rather than
O�log c� rounds as required by our implementation�

The rest of this paper is organized as follows� In Section � we de	ne our model of
computation� and in Section � we de	ne concurrent objects and their implementation� In
Section �� we give our optimal wait�free implementation of an increment register� The
correctness of our algorithm is proven in Section �� and its running time is analyzed in
Section ��

� Model

Our model of computation is a standard synchronous� message�passing model with crash
failures� We sketch the model here� and refer the reader to other papers �MT��� HM�
�
HF��� for details� A system consists of n unreliable processes p�� � � � � pn and an external
environment p�� We refer to p�� � � � � pn as system processes� and to p� as the environment
process� which we consider identical to the system processes with three exceptions noted
below� We assume that all processes share a global clock� which starts at
 and advances in
increments of
� Computation proceeds in a sequence of rounds� with round k lasting from
time k �
 to time k on the global clock� Every round� every process sends messages to
other processes� then receives the messages sent to it in that round� and then performs some
local computation� We assume that any process can send a message to any other process�
Communication is reliable� in that a message sent in one round is guaranteed to be delivered
in the same round� Processes� however� may crash at any time� possibly in the middle of
sending messages� The environment is not allowed to crash �exception number one��

A global state is a tuple �s�� s�� � � � � sn� of local states� one local state si for each process
pi� A local state for process pi contains its id� the time on the global clock� and the entire
history of messages it has sent and received so far� In addition� the local state of the
environment contains the failure information and any other information of relevance to the
system that cannot be deduced from processes� local states �exception number two��

A message sequence M is a sequence m��� m��� � � � � m�n� m��� � � � � mnn of messages de�
scribing one round of communication� The interpretation of M is that mij is the message

�

sent by pi to pj during the round� or � if no message was sent� An execution e is an in	nite
sequence g�M�g�M� � � � of alternating global states and message sequences� where gi is the
global state at time i and Mi is the sequence of messages sent in round i�

We assume that every system process is following a deterministic protocol that deter�
mines what actions it performs and what messages it sends� A process follows its protocol
in every round� except that a process may crash �or fail� in the middle of a round� If pi
fails in round k� then it sends all messages in rounds j � k as required by the protocol� it
sends a proper subset of its messages in round k� and it sends no messages in rounds j � k�
A process is considered faulty in an execution if it fails in some round of that execution�
and nonfaulty otherwise� The environment process need not follow a protocol �exception
number three��

� Concurrent Objects

An object is a data structure that can be accessed concurrently by all processes� It has a
type� which de	nes the set of possible values the object can assume� and a set of operations
that provide the only means to access or modify the object� A process invokes an operation
by sending an invoke message to the object� and the operation returns with a matching
response message from the object� A history is a sequence of invoke�response messages� A
sequential history is a history in which every invoke message is followed immediately by a
matching response message� meaning that the operations are invoked sequentially one after
another� In addition to a type� an object has a sequential speci�cation which is just a set of
sequential histories describing the sequential behavior of the object�

As an example� an increment register is just a register with an increment operation� The
value of the register is an integer� initially
� The increment operation atomically increments
the value of the register and returns the previous value� The sequential behaviors for an
increment register are the sequential histories of increment operations returning values in
the order
�
� �� � � ��

We are interested in concurrent implementations of such objects� To us� given an object
O intended to be used by n processes P�� � � � � Pn� an implementation of O will be a collection
of n processes F�� � � � � Fn called front ends �Her�
a� that process the invocations from the
P�� � � � � Pn and return the responses from O� In our model� we assume that the system
processes p�� � � � � pn are really the front ends F�� � � � � Fn� We assume that the invoking
processes P�� � � � � Pn are part of the environment process p�� and we ignore them completely�
With this in mind� we de	ne a history of a system �p�� p�� � � � � pn� to be the history h

obtained by projecting an execution of the system onto the subsequence of invoke�response
messages appearing in the execution�

An object�s sequential speci	cation de	nes its sequential behavior� and we must now de�
	ne its concurrent behavior� An object is linearizable �HW�
� if each operation appears to
take e�ect instantaneously at some point between the operation�s invocation and response�
Linearizability implies that operations on the object appear to be interleaved at the granu�
larity of complete operations� and that the order of nonoverlapping operations is preserved�
The precise de	nition of linearizability is well�known �HW�
�� so we will not repeat it here�

Finally� an implementation is said to be wait�free if no front end is blocked by the
failure of other front ends� Speci	cally� for every history h of the implementation and every
nonfaulty system process pi in h� every invocation of an operation by pi in h has a matching
response�

�

p’s old
range

p’s new
rangeother ranges

0
1
2

3
4

5
6

7

8
9

ub

lb

previous
generations

current
generation

(a) Initial range. (b) Extending the range.

Figure
� The range�

� The Increment Register

In this section� we give our optimal wait�free implementation of an increment register�
A process p can invoke an increment operation multiple times in a single execution� and

each invocation can take multiple rounds to complete� We refer to the set of increment
operations invoked during round k as generation k increments� and we refer to the processes
invoking these increments as generation k processes� We refer to the rounds of a generation
as phases� and we number the phases of generation k starting with
 so that phase � of
generation k occurs during round k � ��

Since a process p can invoke the increment operation more than once� it identi	es itself
during generation k with an ordered pair hp� ki called its increment process id� We assume
each process p maintains a set IncSet of all the increment process ids that it knows about�
and continues to maintain this set in the background even when it is not actually performing
an increment operation� Every round� it broadcasts this set to other processes� and merges
the sets it receives from other processes into its own set� For notational simplicity� however�
since the generation k will always be clear from context� we will frequently write p in place
of hp� ki�

Understanding our implementation requires understanding the notions of ranges� inter�
vals� splitting� and chopping� so let us begin with these concepts�

Ranges Our implementation has the property that increments in one generation are ef�
fectively isolated from increments in other generations� in the sense that increments in one
generation can choose return values by communicating among themselves� ignoring incre�
ments in other generations� This isolation is achieved by partitioning the return values into
ranges�

As illustrated in Figure
� each process p maintains a range R � �R�lb� R�ub� of return
values� Initially� using the set IncSet of increment process ids known to p� process p sets its
lower bound lb to the number of increments invoked by previous generations� and its upper
bound ub to the total number of increments invoked by previous and current generations�
Every phase� process p exchanges ranges with other processes in its generation� and extends
its range by dropping its lower bound to the smallest lower bound received from any of these
processes�

Intuitively� by setting its initial lower bound to lb� process p is reserving lower values

�

a
b
c
p
z

p’s value

0

2^k - 1

(a) Initial interval contains initial range. (b) Interval splits to the half containing p’s value.

Figure �� The interval�

v � lb as return values for increments in previous generations recorded in IncSet� Later� if
p hears that another process q in the same generation set its initial lower bound to lb� � lb�
then p knows some of these earlier increments have failed� so p ceases to reserve return
values for them and drops its lower bound to lb��

Our algorithm guarantees that if a nonfaulty process sets its upper bound to ub� then
all processes in all later generations set their initial lower bounds to lb � ub� so their lower
bounds remain above ub forever� In this sense� the upper bounds of the nonfaulty processes
partition the return values� Nonfaulty processes in di�erent generations have disjoint ranges�
allowing them to ignore each other once their initial ranges have been chosen�

Intervals and Splitting Given a range R of acceptable return values� however� p still
has to choose one of them to return� To do so� we modify the fundamental idea in the
optimal algorithm for strong renaming �HT�
�� The basic idea is that if the values in p�s
range R are b bits long� then p chooses a b�bit value from R one bit at a time� starting
with the high�order bit and working down to the low�order bit� To implement this idea�
process p maintains an interval I � �I�lb� I�ub� of return values that contains its range R

�see Figure ��� The size of the interval is always a power of �� Process p�s initial interval
is the smallest interval of the form �
� �k �
� that contains p�s initial range� During an
increment� process p repeatedly splits its interval in half until the interval contains a single
value� and this is the value that p returns� It is easy to see that all of the intervals generated
by p are of the form �a�k� a�k � ��k �
�� for some b� k bit value a� and such intervals are
called well�formed intervals� Intuitively� this interval represents the fact that p has chosen
a as the high�order b� k bits of its return value� but must still choose the low�order k bits�

The procedure that p uses to split its interval in half is important �see Figure ��� Every
round� process p exchanges intervals with other processes� and p maintains a set C of all
processes sending p an interval intersecting its current interval I � The processes in C are
p�s competitors since they include the processes considering return values in p�s range� To
avoid returning the same value as one of its competitors� process p attempts to predict what
values its competitors will choose� To predict accurately� however� p must wait until I is
maximal among the intervals received from its competitors� this means that p�s competitors
are considering only values in I � Once I is maximal� p assigns return values from its range
to its competitors� starting at the bottom of its range and assigning values to competitors
in order of increasing process id� Eventually� p assigns a value v to itself� Process p then
replaces I with its top half top�I� or its bottom half bot�I��whichever half contains v�and

�

split

split

chop

Figure �� Chopping�

then replaces its range R with the intersection of R and I � Continuing in this way every
round� process p�s interval eventually contains a single value v� at which point p chooses v
but continues exchanging its interval with other processes until all processes in its generation
have chosen a value�

Chopping It is easy to see that the split operation is what gives rise to the algorithm�s
logarithmic nature� in any given round� a maximal interval is guaranteed to split in half� so
the size of the maximal intervals decreases by a factor of � with every round� Unfortunately�
this logarithmic nature is logarithmic in the size of the initial interval� which can be as large
as the total number of increments ever invoked� and we want the algorithm to run in time
logarithmic in the number of concurrently executing increments� Fortunately� we can speed
up the algorithm dramatically by introducing a new operation called a chop� illustrated in
Figure �� For example� if p�s range R is just the top few values in its interval I � then it is
clear that p is going to split up repeatedly for many rounds� We accelerate this splitting
by allowing p to chop in a single round from I up to the smallest well�formed interval I �

containing R� We say that p chops up in this case� and chopping down is similar� Since
chopping is just an accelerated form of splitting� process p must wait until I is maximal
among the intervals received from its competitors before chopping� On the other hand� it
is important that we do not allow p to split and chop in the same round� if p splits down
and then immediately chops up to a smaller interval containing its new range� then it runs
the risk of chopping away the bottom of its interval before learning that it can extend its
range by lowering the lower bound of its range� so it runs the risk of reaching a state in
which its interval and range are too small to assign distinct values from its range to all of
its competitors�

Algorithm With this� we have introduced the notions of ranges� intervals� splitting� and
chopping� and we can turn our attention to the increment register implementation I itself�
The main loop of the algorithm is given in Figure �� the de	nitions of splitting and chopping
are given in Figure �� and the de	nitions of some initialization steps are given in Figure ��

During the initial phases of generation k� an incrementing process p starts by adding its
increment process id hp� ki to IncSet� it exchanges IncSet with other processes and uses the
result to choose its initial range R as described above� it exchanges R with other processes�

�

begin �� a generation k increment by process p ��

initialize��� �� add �p�k	 to IncSet ��

phase
��� �� bcast IncSet� choose initial range R ��

phase���� �� bcast R� extend R� choose initial interval I ��

repeat

broadcast �p�R�I�lb	

receive �p��R��I��lb�	 from generation k processes p�

�� collect names and intervals of competitors ��

C �
 �p� � �p��R��I��lb�	 received and I� intersects I�

N �
 �I� � �p��R��I��lb�	 received and I� intersects I�

�� extend range by dropping the lower bound ��

R�lb �
 lb �
 min�lb� � �p��R��I��lb�	 received�

R �
 E �
 R intersect I �� E is used only in the proof ��

if I is maximal in N then

if R is contained in either top�I� or bot�I�

then chop��

else split��

until �I�� � � for all I� in N

v �
 I�lb �� I � �v�v� ��

return�v��

end�

Figure �� The increment register I�

chop��

begin

I �
 smallest well
formed interval containing R

end�

split��

begin

rank �
 rank of p in C ��
 is the lowest rank ��

value �
 R�lb � rank

if value in top�I� then

I�lb �
 R�lb �
 I�lb � �I���

else

I�ub �
 R�ub �
 I�ub
 �I���

fi

end�

Figure �� Chopping and splitting an interval�

�

initialize��

begin

k �
 current round number �� choose generation ��

p �
 �process id� k	 �� choose id ��

IncSet �
 IncSet union �p� �� set of incrementors ��

end�

phase
��

begin

broadcast �p�IncSet	

receive �p��IncSet�	 from all processes p�

IncSet �
 union of all IncSet� received

GenSet �
 set of generation k� � k processes p� in IncSet

R�ub �
 �IncSet�
 �

R�lb �
 lb �
 �GenSet�

end�

phase���

begin

broadcast �p�R�lb	

receive all �p��R��lb�	

R�lb �
 lb �
 min generation k lower bound lb� received

I �
 smallest well
formed interval containing R

end�

Figure �� The initialization phases�

extends R by dropping its lower bound as described above� and uses the result to choose
its initial interval� In all later phases� process p exchanges its interval and range with other
processes� extends its range if possible� and splits or chops its interval and range whenever it
	nds that its interval is maximal among its competitors� When process p�s interval contains
a single value� it continues broadcasting its interval and range until all competing intervals
contain a single value� then p chooses its value and halts�

� Correctness

Proving the correctness of this algorithm consists of proving two properties�
The 	rst property we must prove is that given two nonoverlapping increments� the value

returned by the 	rst is less than the value returned by the second� This will imply that the
implementation is linearizable� In fact� this is very easy to prove� using the observation that
the ranges e�ectively isolate distinct generations� a fact mentioned in the previous section�s
discussion of ranges�

Lemma �� Suppose p and q are generation i and j processes returning values v and w�
respectively� If i � j� then v � w�

�

For the the second property� remember that C is the set of competitors� and notice that
E �a history variable used only in the proof� is the extended range �the result of dropping the
lower bound of the real range R� that is used by a process to assign values to its competitors
�including itself�� The second property we must prove is that jCj � jEj for every process p
in every phase� This invariant says that p can always assign distinct values from E to its
competitors� This will imply that the algorithm terminates� whenever a process 	nds that
its interval is maximal� it can assign itself a value and split or chop to a smaller interval
containing this value� This will also imply that distinct processes choose distinct values� if p
and q return the same value v� then at some point they both have the same extended range
E consisting of the single value v and they both have a set of competitors C including p

and q� but jCj � � ��
 � jEj�
Proving that jCj � jEj requires reasoning about the interactions between the splits

and chops performed by di�erent processes in di�erent phases� and we prove two claims
�Claims � and � below� about these interactions� Let us 	x a generation k for the rest of
this paper� We denote the values of I and R broadcast by p during phase r of an execution
e by Ie�p�r and Re�p�r� and we denote the values of E and C held by p at the end of phase
r of execution e by Ee�p�r and Ce�p�r� We often omit subscripts like e and p when they are
clear from context�

We say that p splits to I in phase i if p sends �I in phase i�
 and I in phase i� where
p changes from �I to I by splitting� We say that p splits up or splits down depending on
whether I � top��I� or I � bot��I�� We say that p chops into I in phase i if p sends �J �� I in
phase i�
 and J � I in phase i� where p changes from �J to J by chopping� We say that
p chops up or chops down depending on whether J � top� �J� or J � bot� �J�� Two simple
properties about splitting and chopping are often useful�

Fact �� If p splits from Ii�� to Ii� then the upper bounds of Ri � Ei � Ii are equal if p
splits down� and the lower bounds are equal if p splits up�

Fact �� If p chops from Ii�� to Ii� then the upper bounds of Ei�� � Ri � Ei � Ii � Ii��
are equal if p chops up� and the lower bounds are equal if p chops down�

The 	rst property follows from the fact that the range spans the midpoint of the interval
during a split �so the split truncates the range and interval at the same point�� The second
property follows from the fact that the initial range always spans the midpoint of the initial
interval� so a split must occur before a chop �and again the split truncates the range and
interval at the same point��

Reasoning about one process p�s splitting and chopping usually involves reasoning about
another process q�s behavior in earlier phases� The 	rst claim below argues that whenever
a process p with interval I has to 	nd room for its competitors C in its extended range E�
each of these competitors themselves had to 	nd room for C in their extended ranges when
they split or chopped into the interval I �

Claim �� If Iq�j � Ip�i for some j � i and Iq�j appears maximal to q in phase j� then
Cq�j � Cp�i�

Proof Sketch� If r sends p an interval intersecting Ip�i in phase i� then r sends q an interval
intersecting Ip�i and hence intersecting Iq�j � Ip�i in the earlier phase j � i�

The second claim we prove concerns the fact that a process p may split into an interval
I in an orderly sequence of splits while another process q may chop into I in a chaotic
interleaving of splits and chops� The claim states that the moment this happens� p�s extended
range E spans its entire interval I from that moment on� This means that if chopping
complicates our analysis in one way� it simpli	es our analysis in another since we no longer
have to be careful to distinguish between intervals and ranges�

Claim �� Suppose p splits to I in phase i� and suppose q chops into I in phase j� If i � �

and j � �� then Ip�� � Ep�� at the end of phase ��

Proof Sketch� If p splits down from �I to I � then q chops down into I � and its new interval
J has the same lower bound as I � Since p splits down� its interval I and range have the same
upper bound� Since q chops down� its interval J and range have the same lower bound� so
p�s interval I and extended range will have the same lower bound at the end of that phase�

If p splits up from �I to I � then q must chop up into I � Since p splits up� its interval I
and range have the same lower bound� Suppose� however� that the top of its range is lower
than the top of its interval� We can argue that p�s initial range must extend below I �or p
would have chosen I as its initial interval�� so q�s early ranges must extend below I � so q

would never be able to chop up into I � a contradiction�

These two claims give us the tools we need to prove that jCj � jEj is an invariant� We
prove this invariant by de	ning the condition

I�� jCe�p�rj � jEe�p�rj in all executions e for all processes p and generation k phases r �
�� � � � � ��

and then proceeding by induction on � 	 � to prove that I� holds for all �� Fix some
execution e and process p� and let I � R� E� and C denote Ie�p��� Re�p��� Ee�p��� and Ce�p���

As the basis of our induction� we show that the invariant is true initially� We actually
prove two results� The 	rst concerns the simple case where p�s range contains some other
process�s initial range� and the second concerns the more common case where p�s interval
�which is bigger than the range� contains some other process�s initial interval�

Claim �� If R contains some process q�s initial range Rq��� then jCj � jEj�

Claim 	� If I contains some process q�s initial interval Iq��� then jCj � jEj�

As for the inductive step itself� if I does not contain the initial interval of any process�
then all of p�s competitors have chopped or split into I � The next result concerns the
chopping case� It says that if I is p�s interval and if any process q has chopped into I at any
time in the past�regardless of whether p and q are now competitors�then the invariant
is preserved� It is a strong statement that chopping quickly brings distinct intervals and
ranges into synch�

Claim
� Suppose I��� is true� If any process has chopped into I by phase �� then jCj � jEj�

Proof Sketch� If I contains the initial interval of any process� we are done by Claim �� If
p chopped into I in phase i � �� then C � Cp�i�� and Ep�i�� � E� and the result follows
from I���� If p split into I � then some process q chopped to J � I in phase j � �� We can
prove that C � Cq�j�� and Eq�j�� � J � I � E� and the result follows from I����

The di�cult cases� therefore� are the cases in which p and all its competitors split from
�I to I � The case of splitting down is easy� but the case of splitting up is di�cult� In fact�
understanding how to choose and manipulate ranges to make the case of splitting up go
through is the most important way in which our increment register algorithm di�ers from
the strong renaming algorithm it is based on�

Claim �� Suppose I��� is true� If p and all its competitors have split down to I by phase
�� then jCj � jEj�

Proof Sketch� Let q be the greatest competitor in C� meaning q is the greatest process to
send an interval contained in I to p in phase �� Consider the phase j in which q split from
�I to I � and notice that C � Cq�j�� by Claim �� Since q is the greatest process in C and
since q split down from �I to I � process q found that all processes in C � Cq�j could choose
distinct values from the bottom half of its extended range� Since E is at least this big� we
have jCj � jEj�

Claim ��� Suppose I��� is true� If p and all its competitors have split up to I by phase ��
then jCj � jEj�

Proof Sketch� Let q be the least competitor in C� meaning q is the least process to send
an interval contained in I to p in phase �� Consider the phases i � � and j � � in which p

and q split up from �I to I � respectively� Notice that since p and q split their intervals at the
ends of phases i�
 and j �
� Claim � implies that C � Cp�i�� and C � Cq�j���

Suppose that i � j �the case with j � i is similar� and easier�� Let e� be the execution
di�ering from e only in that in each phase k 	 i�
 of e� the processes p and q receive messages
from exactly the same set of processes that p receives messages from in the corresponding
phase of e� Notice that this does not change the set of messages p receives in phase i�
�
and hence does not change the fact that p splits up to I in phase i� but it might change the
messages and splitting of q�

Prove that Ee��q�i���lb � Ee��p�i���lb 	 Ee�q�j���lb and C � Ce�q�j�� � Ce��q�i��� meaning
that at the end of phase i�
 in e� process q�s lower bound is higher and set of competitors
is larger than at the end of phase j �
 in e� Since q splits up at the end of phase j �
 in
e� it will split up at the end of phase i �
 in e�� assuming its interval �I is maximal among
the intervals it receives in e�� It must be maximal� however� because q receives precisely the
same intervals in phase i �
 of e� as p does� and p splits up� In fact� since p and q have
extended ranges with the same lower bound and receive the same intervals at the end of
phase i�
 in e�� they must assign the same values to the same processes at the end of phase
i �
 of e�� It follows from I��� that p and q can assign distinct values from Ee��p�i�� and
Ee��q�i�� to all processes in Ce��p�i�� � Ce��q�i��� and we have already noted that they assign
the same values� Since q is the smallest process in C � Ce��q�i�� and q splits up� this means
that both p and q can 	nd values for all processes in C in the top halves of their extended
ranges� Since the top half of p�s extended range is E�remember that upper bounds never
change�it follows that jCj � jEj� as desired�

The invariant jCj � jEj follows by induction on �� and the correctness of our implemen�
tation follows by this invariant and Lemma
�

Theorem ��� I is a linearizable� wait�free implementation of an increment register�

� Time complexity

We now show that increment operations halt in O�log c� rounds� where c is the number
of concurrent operations� Technically speaking� a failed operation is concurrent with �or
overlaps� every following operation� so c can grow arti	cially large� Fortunately� we can
prove a tighter bound� depending on a set of concurrent operations that is generally a much
smaller set�� Our algorithm has the nice property that the invocation of an increment
operation delays at most one generation� If the invoking process is nonfaulty� then the
increment delays its own generation� If the invoking process is faulty� then it may delay

�This does not mean that our algorithm runs faster than the ��log c� worst	case lower bound� because
these two sets are equal in that single worst	case execution�

�

a later generation� but it will delay at most one� In fact� we can identify exactly which
generation an operation delays�

For each generation k� we de	ne the active set of processes� namely those processes or
invocations that contribute to the generation�s running time� We show that the largest
range chosen by any generation k process is bounded in size by the size of the active set�
and we show that a generation halts in time logarithmic in the size of the largest range�
From this it follows that all generation k increment operations halt in time log ck� where ck
is the size of the active set for generation k�

��� Active Sets

We begin by de	ning activek� the active set of processes for generation k�
Loosely speaking� the active set for generation k consists of all processes that the �good

processes learn about for the 	rst time in round k� Remember that all processes choose
their initial range at the end of phase
� exchange their ranges� and then choose their initial
intervals at the end of phase
 based on the ranges they receive� The �good processes
for generation k are the generation k processes that survive these initialization phases and
begin broadcasting intervals�

Let genk be the set of generation k processes� Formally� we de	ne goodk to be the set of
generation k processes that are nonfaulty in phases
 and
 of generation k �that is� they
do not fail in rounds k and k �
�� For any good process p� the set of processes that p has
learned about in the 	rst k rounds is exactly the value of its set IncSet at the end of round
k� which we denote by IncSetp�k� The set knownk of all processes the good processes know
about at the end of round k is given by

knownk �
�

p�good
k

IncSetp�k�

and the set activek of all processes that the good processes learn about for the 	rst time in
round k is

activek � knownk � knownk��

�where �� denotes set di�erence��
It is clear that the set of known processes increases with every round�

Claim ��� knownk�� � knownk for all k�

Using this observation� we can show that the set activek has two desirable properties�
every nonfaulty generation k process belongs to activek� and every process belongs to at
most one set activek�

Claim ��� goodk � activek for all k� and activej
 activek � � for all j �� k�

��� Maximal Range

For each generation k� we can bound the size of the ranges sent by good processes with
activek� Since we are trying to bound the execution time of generation k increments� we
need only consider the ranges of the good processes� since all other processes fail by the end
of phase
�

Consider the largest range a good process p can send� Every process p chooses upper
and lower bounds up and lp at the end of phase
� but then p decreases its lower bound in
every round� At any given time� a process p�s lower bound is the minimum of the lower

�

bounds lq chosen by some subset of the generation k processes� In the worst case� a good
process p�s largest range Rp�i is contained in max rangek � �lbk � ubk �� where

ubk � maxfup � p � goodkg
lbk � minflp � p � genkg

In other words�

Claim ��� Rp�i � max rangek for every good process p � goodk and every phase i�

The next result shows that the size of max rangek is bounded by the size of activek� and
hence so is the size of any range used by any good process in generation k�

Claim ��� jmax rangekj � jactivek j�

Proof Sketch� We prove that jknownkj 	 ubk �
 and that jknownk��j � lbk� so

jmax rangek j � ubk � lbk �
 � jknownkj � jknownk��j � jknownk � knownk��j � jactivekj
since knownk�� � knownk by Claim
��

��� Running Time Analysis

For each generation k� we can bound the size of intervals sent by good processes with
max rangek� Consider any telescoping chain I�
 I�
 � � �
 Il of intervals sent during
phase �� where Ii strictly contains Ii��� and suppose the sequence is of maximal length�
Since I� is maximal� we know that it will split in half immediately at the end of phase ��
leaving I�
 � � �
 Il as a maximal chain� We now prove that the size of I� is roughly the
size of max rangek� Since the size of the maximal interval interval reduces by half in each
round� the running time is clearly logarithmic in the size of the largest interval� and it will
follow that the running time is roughly logarithmic in jmax rangekj � jactivekj�

Claim ��� Given any sequence of intervals I�
 I�
 � � �
 Il sent in phase � of generation
k� we have jI�j � �jmax rangekj�

Proof Sketch� Since the intervals Ii in the chain are sent in phase �� they are sent by good
processes in goodk �processes surviving phases
 and
�� and their ranges Ri are contained
in max rangek by Claim
�� The upper and lower bounds R��ub and R��lb of R� are clearly
in the top half and bottom half of I�� respectively� Since I� is strictly contained in I�� we
know that I� is either in the top or bottom half of I�� We consider the two cases separately�

Suppose I� is in the top half of I�� Then since the lower bound R��lb of R� at the
end of phase
 is in the bottom half of I�� the lower bound R��lb of R� will drop to the
bottom of I� at the end of phase �� Since the upper bound R��ub of R� is in the top half
of I�� the range R� will be at least half of I� by the end of phase �� This means that
jI�j � �jR�j � �jmax rangek j�

Suppose I� is in the bottom half of I�� This means that at the end of phase
 the upper
bound R��ub of R� is in the top half of I�� and the lower bound R��lb of R� is in the bottom
half of I�� At the end of phase �� therefore� the lower bound R��lb of R� will be in the bottom
half of I��or lower�so R� will span the top half of I�� jI�j � �jR�j � �jmax rangekj�

Combining these results� we are done�

Theorem �	� Every generation k increment operation completes within O�log jactivek j�
rounds�

�

Acknowledgments� We thank Maurice Herlihy for his insights and interest�

References

�ABND���� Hagit Attiya� Amotz Bar�Noy� Danny Dolev� Daphne Koller� David Peleg�
and Rudiger Reischuk� Achievable cases in an asynchronous environment� In
Proceedings of the ��th IEEE Symposium on Foundations of Computer Science�
pages ���!���� October
����

�ABND��
� Hagit Attiya� Amotz Bar�Noy� Danny Dolev� David Peleg� and Rudiger Reis�
chuk� Renaming in an asynchronous environment� Journal of the ACM� July

��
�

�AHS�
� James Aspnes� Maurice P� Herlihy� and Nir Shavit� Counting networks and
multi�processor coordination� In Proceedings of the ��th ACM Symposium on

Theory of Computing� May
��
�

�Her��� Maurice Herlihy� A quorum�consensus replication method for abstract data
types� ACM Transactions on Computer Systems� ��
����!��� February
����

�Her�
a� Maurice Herlihy� Randomized wait�free concurrent objects� In Proceedings

of the �	th Annual ACM Symposium on Principles of Distributed Computing�
pages

!��� ACM� August
��
�

�Her�
b� Maurice P� Herlihy� Wait�free synchronization� ACM Transactions on Pro�

gramming Languages and Systems�
��
��
��!
��� January
��
�

�HF��� Joesph Y� Halpern and Ronald Fagin� Modelling knowledge and action in
distributed systems� Distributed Computing� �����
��!
���
����

�HM�
� Joseph Y� Halpern and Yoram Moses� Knowledge and common knowledge in
a distributed environment� Journal of the ACM� ���������!���� July
��
�

�HT�
� Maurice P� Herlihy and Mark R� Tuttle� Wait�free computation in message�
passing systems� Preliminary report� In Proceedings of the
th Annual ACM

Symposium on Principles of Distributed Computing� pages ���!���� ACM� Au�
gust
��
�

�HW�
� Maurice P� Herilhy and Jeannette M� Wing� Linearizability� A correctness con�
dition for concurrent objects� ACM Transactions on Programming Languages

and Systems�
��������!���� July
��
�

�Lam��� Leslie Lamport� Time� clocks� and the ordering of events in a distributed
system� Communications of the ACM� �
�������!���� July
����

�Lam��� Leslie Lamport� The part�time parliament� Technical Report ��� DEC Systems
Research Center� September
����

�MT��� Yoram Moses and Mark R� Tuttle� Programming simultaneous actions using
common knowledge� Algorithmica� ��
��
�
!
���
����

�Sch��� Fred B� Schneider� Implementing fault�tolerant services using the state machine
approach� a tutorial� Technical report� Cornell University� Computer Science
Department� November
����

�

